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Abstract In this work we present a multi-robot information based exploration strat-
egy with the goal of constructing high resolution 3D maps. We use a Cauchy-
Schwarz Quadratic Mutual Information (CSQMI) based objective which operates
on a novel angle enhanced occupancy grid to guide robots in the collection of RGBD
panoramas, which have been shown to provide memory efficient high quality rep-
resentations of space. To intelligently collect panoramas, we introduce the angle
enhanced occupancy grid which emphasizes perspective in addition to coverage, a
characteristic we believe results in the construction of higher quality maps than tra-
ditional occupancy grid methods. To show this, we conduct simulations and com-
pare our approach with frontier exploration. Using our angle enhanced occupancy
grid, only 11.4% of decimeter wall segments were covered by fewer than 20 pixels
as compared with 33.5% for the frontier method.

1 Introduction

A central pillar of robotics research is the development of efficient autonomous
mapping and exploration strategies with the attendant development of suitable rep-
resentations of the environment. Suitable representations serve as a prerequisite for
fundamental tasks such as exploration and localization, with a plethora of forms
emerging to suit each case. Metric maps that render spatial attributes in terms of
their location in a shared coordinate frame have enjoyed immense popularity in the
literature. Examples of de facto standards for metric maps include occupancy grids
for exploration [4] and landmark maps for simultaneous localization and mapping
(SLAM) [10]. On the other hand, topological maps seek to relate semantic informa-
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tion about the environment gleaned from sensor observations, and have been used
to aid in rapid exploration [3] and efficient task allocation [8].

In typical SLAM scenarios, localization and mapping are the motivating factors
of the entire system. However, choices made in support of those goals may not be
well-suited for other uses of map data. For example, in landmark based maps only
a few patches of images representing regions of interest are extracted from source
imagery, while in voxel based grids the fine details of a point cloud are lumped into
a small number of cells. The effects of filtering out significant portions of sensor
data have only been magnified with the emergence of low cost off the shelf RGBD
cameras. These sensors combine depth and visual information that can be used to
create dense, high fidelity three dimensional maps [11], but the torrent of available
data must must be carefully navigated.

New approaches using RGBD cameras include the influential work of New-
combe in which dense mapping and tracking is achieved by fusing depth frames for
surface reconstruction [7]. Henry employed surfels, e.g., surface orientation, patch
size, and color, gleaned from RGBD frames to build 3D maps of indoor environ-
ments [5]. Recent work by Taylor [9] focuses on panoramic views comprising mul-
tiple depth frames captured at a location. Panoramic depth images are advantageous
for mapping because they provide both spatial information for motion planning and
fine grained detail for object recognition. Furthermore, when compared to traditional
grid based approaches, panoramic images have the potential to provide significantly
more detail while consuming only a modest amount of memory resulting in better
scaling characteristics.

In this work, we build upon [9] to develop a novel information maximizing ex-
ploration strategy for teams of robots to map an unknown environment. Recent ad-
vances in our understanding of information theory and how to apply it to the robot
exploration problem have lead to a slew of new algorithms based on a powerful
principle: the map provides hints about what observations to expect at different lo-
cations and vice versa. This notion is at the heart of mutual information, which
seeks to quantify the amount of information one random variable contains about
another [2]. Julian demonstrated that mutual information eventually drives the robot
towards unknown space and used it as an objective function for autonomous explo-
ration using a range sensor [6]. A similar approach was shown by Charrow who used
Cauchy-Schwarz Quadratic Mutual Information (CSQMI), a metric closely related
to mutual information, to guide a robot equipped with an RGBD camera to map an
unknown environment [1].

Different from existing work, we present a novel spatial grid representation that
emphasizes perspective in addition to coverage to guide robots in exploring un-
known spaces while collecting useful panoramas to create a detailed map of the
environment. We leverage existing grid maps and their simplifying power for rea-
soning about exploration tasks to guide a group of robots to collect panoramas which
can then be used to construct a detailed map of the environment. In our strategy, we
employ an occupancy grid based representation of the environment to enable each
robot to execute a CSQMI based collaborative exploration strategy that uses mini-
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mal communication bandwidth. A high fidelity representation of the environment is
then reconstructed using the collective sequence of panoramic images.

This paper is organized as follows: A detailed description of our methodology is
provided in Section 2. Simulation and experimental results are presented in Section
3. We conclude with a summary of our work and a discussion on directions for
future work in Section 4.

2 Methodology

The objective is to efficiently explore an unknown environment using multiple
robots to collect high resolution panoramic images that can be used to produce a
detailed, memory conscious representation of space.

Using panoramas to represent the environment offer a number of advantages over
traditional grid based maps [9]. First, they capture the surface structure of interest
and nothing more as free space is implicit in the representation, offering a high level
of detail for the memory used as compared to an occupancy grid. While memory
usage may not be of significant concern when the workspace is small, it quickly
becomes a significant issue when exploring and mapping realistically detailed and
expansive spaces. Our work capitalizes on the unique perceptual data provided by
RGBD panoramas presented in [9]. By capturing such views of the space surround-
ing a robot at specific locations in the workspace, a detailed map of the environment
can be created. Our work focuses on the development of a suitable exploration strat-
egy and we refer the interested reader to [9] for the details on the synthesis of the
panoramas and an overview of comparable state-of-the-art mapping techniques.

From [9], the panoramas are pieced together from a series of color and depth
images collected at regular intervals while the robot turns in place. As such, the
images can be stitched and refined locally on the robot, alleviating the need for
high bandwidth networking. As such, our exploration strategy is decomposed into
two main components: 1) collecting and storing panoramas for reconstruction and
updating local maps maintained for planning purposes and 2) determining the next
best location to collect more panoramas. We briefly describe our approach.

2.1 Angle Enhanced Occupancy Grid

While many exploration techniques focus on coverage of free space, the ideal map
should also afford clear and diverse views of surfaces within that space. Consider a
scenario where a robot is advancing down a hallway. A panorama is captured, and
a sign on the wall just manages to fall within the cameras range. The free space
has been identified and, from a traditional free space coverage standpoint, no more
value can be gleaned from observing the robot’s immediate surroundings. However,
from a surface reconstruction standpoint, the face of the sign was captured at a
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shallow angle and may be rendered illegible in the resulting map. Here the utility
of capturing space from advantageous perspectives is made plain as can be seen in
Fig. 1.

To encourage perspective in addition to coverage, we employ an angle enhanced
2D occupancy grid such that each point in space contains four values representing
the cardinal directions. As new observations are integrated into the map, the appro-
priate bin is updated according to the angle at which the cell was observed by the
sensor. This creates an incentive for the robot to collect different views of the same
physical space. Since free space contains the same information from all perspectives
this binning strategy is not applied to unoccupied cells.

The principle behind this choice in map representation is that an occupancy grid
naturally breaks environmental surfaces into segments. These segments are, at a
fine enough scale, well approximated by star convex functions that we can drasti-
cally subsample by only considering a small number of view angles between sensor
and surface. The primary tuning parameter then is the occupancy grid resolution, but
not, as is typical, to directly capture finer geometry. Instead, occupancy grid reso-
lution must be sufficient for the above convexity assumption to hold. Thus complex
surface geometry that may be captured in an image complements the efficient, if
coarse, geometric approximation offered by the underlying occupancy grid used for
planning.

2.2 Exploration Planning

To select useful exploration goals, it is important to estimate how much future ob-
servations will tell us about the space they can cover. This notion is captured by
computing the mutual information between a predicted sensor reading and the map
given by

IMI [m;z] = H[m]−H[m | z]. (1)

Since a future measurement is implicitly conditioned on the robot’s position, an ob-
jective function naturally arises wherein mutual information is calculated for a col-
lection of candidate poses and used to determine the quality of a candidate panorama
capture location.

Fig. 1 Objects of interest on
display in a hallway captured
at different perspectives (left).
Illustration of cells in an angle
occupancy grid begin inter-
cepted by beams, depicted as
orange arrows (right).
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In this work, we employ the Cauchy-Schwarz Quadratic Mutual Information
(CSQMI) between a predicted measurement and the map to determine the next
best position for the robot to obtain a panorama during its exploration of the space.
In general, mutual information can be computationally expensive since it requires
integrating the likelihood over entire space, often represented by a grid. Since a
closed form expression for the CSQMI exists [1], it enables the quantification of the
value of future measurements in a computationally efficient manner. Furthermore,
CSQMI has been shown to produce similar results to mutual information [1]. Thus,
when coupled with our angle enhanced 2D occupancy grid representation of the
workspace for navigation purposes, the result is a scalable exploration strategy with
well bounded computational and memory complexities for any given workspace.
We briefly summarize the computation of CSMI using the proposed angle enhanced
occupancy grid and refer the interested reader to [1] for the details.

Let z denote the set of random variables representing future sensor measure-
ments that model the distance a beam at image pixel k travels before encountering
an obstacle. Since our sensor measurement is a panoramic RGBD image, we evenly
distribute k beams on the interval [0,2π) originating at pose x. To model the noise
inherent in a depth measurement, we use the piecewise normal distribution given by

p(zk = z | d) =


N (z−0,σ2) d ≤ zmin

N (z− zmax,σ
2) d ≥ zmax

N (z−d,σ2) otherwise
(2)

where zmin and zmax are the minimum and maximum range of the sensor respectively
and N (z−µ,σ2) is a Gaussian with mean µ and variance σ2. While more complex
beam based models exist [10], this simple model is sufficient for our purposes.

Using the beam model given by (2), a distribution over possible measurements
denoted by p(zk) can be found by computing the marginal distribution over the list
of c cells belonging to the map m intercepted by the beam

p(zk) =
C

∑
i=0

p(c = ei)p(zk | c = ei) (3)

where for i > 1, ei means that the ith cell is the first occupied cell in c, e0 means that
no cells in c are occupied, and C = |c|.

The CSQMI between the map, m, and a predicted observation, z, collected at a
location in space, x, is expressed as

ICS[m;z | x] = (∑
∫

p(m,z | x)p(m)p(z | x)dz)2

∑
∫

p2(m,z | x)dz∑
∫

p2(m)p2(z | x)dz
(4)

where each sum is over all possible maps and the integrals are over all possible
measurements.

Due to the camera’s high resolution and the fact that panoramas comprise many
images stitched together, the number of beams k in the measurement zk could be
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quite large. However, exactly representing each pixel in a panorama with a beam is
not necessary. Depending on the resolution of the grid, beams very close together
often intercept many of the same cells which leads to the double counting of in-
formation gained from each beam. As such, we only consider the subset of beams
that can be reasonably considered independent of one another given the range of the
camera and the resolution of the grid. Assuming independence between elements
of this subset of beams, (4) is computed by summing the individual contribution of
each beam as follows

ICS[c;zk | x] = log
C

∑
l=0

wlN (0,2σ
2)

+ log
C

∏
i=1

(o2
i +(1−oi)

2)
C

∑
j=0

C

∑
l=0

p(e j)p(el)N (µl−µ j,2σ
2)

−2log
C

∑
j=0

C

∑
l=0

p(e j)wlN (µl−µ j,2σ
2).

(5)

Here oi = p(ci = 1) is the probability that the ith cell in c is occupied and p(e j) is the
probability that the first occupied cell in c is c j. Additionally, each wl is calculated
as follows

wl = p2(el)
C

∏
j=l+1

(o2
j +(1−o j)

2). (6)

with 0 < l <C, w0 = p(e0), and wC = p2(eC). The final result then becomes

ICS[m;z | x] =
k

∑
i=0

ICS[c;zk | x]. (7)

CSQMI is computed for a list of poses, χ , sampled from known free space. Fig. 2
shows the CSQMI reward surface computed for the corresponding workspace using
a traditional 2D occupancy grid and using an angle enhanced occupancy grid. By
incorporating the notion of perspective into the occupancy grid, the CSQMI reward
surface computed using the angle enhanced grid results in better coverage of the all
accessible sides of objects and obstacles.

To choose between the highest CSQMI poses, travel costs in the form of distance
along a path calculated using A* from the robot to the candidate pose are used.
Thus, the next best position is given by

x? = argmax
x∈χ

ICS[m;z | x]
Cost(x)

(8)

where Cost(x) is the path distance from the robot’s current pose to the candidate
goal, x. Integrating the travel cost results in emphasizing completion of locally ac-
cessible space before advancing towards uncharted territory.
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Fig. 2 A sample environment
after three panoramas have
been captured (left) and the
resulting CSQMI reward
surface for a traditional 2D
occupancy grid (center) and
the angle enhanced occupancy
grid (right).

2.3 Multi-robot Strategy

From (4) we see that our approach provides a computationally efficient strategy to
determine next best locations for measurements in a scalable way. Accordingly, our
strategy is particularly well suited for small, resource constrained platforms since
each robot only has to compute the CSQMI objective function once to determine
the next best position to capture a panorama. This enables us to develop a simple
coordination strategy where the single robot exploration strategy is executed in par-
allel by a team of robots.

The deployment of multiple robots speeds up the exploration process, especially
when robots are tasked to focus on distinct regions of the workspace. Since travel
costs are already accounted for during planning, our coordination strategy simply
requires individual robots to share their local maps and goals to ensure panorama
capture locations do not overlap. Assuming the relative pose of each agent is avail-
able, a small grid circumscribing the latest panorama is broadcasted to the other
robots and integrated into their local maps. The active goals of other agents are
also considered during planning to prevent multiple robots from traveling to the
same region. We note that this communication strategy only requires the commu-
nication of local maps and goals which are only updated each time a panorama is
captured and as such are only transmitted occasionally, reducing the required band-
width. The result is a distributed strategy for cooperative mapping of an unknown
environment. Critically, this approach relies on the exchange of small occupancy
grids rather than accumulated imagery or detailed surface reconstructions. This is
the difference between megabytes-per-second and kilobytes-per-hour in terms of
communication cost.

3 Results

To validate our approach, simulations and experiments were conducted in a variety
of indoor environments with teams of one to five robots. An Asus Xtion Pro Live
RGBD camera was used to provide observations of the environment. Each panorama
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comprised of 36 images, one for every 10 degrees of rotation. Throughout our sim-
ulations and experiments, we assume the pose of each robot in a global coordinate
frame is provided. While robot localization remains a non-trivial problem, our ob-
jective is validating the proposed exploration strategy. As such, we assume robot
localization can be achieved via existing on-board localization methods.

3.1 Simulations

To evaluate the proposed angle aware exploration strategy, we compare our ap-
proach with the well established frontier method [12]. We use two simulated en-
vironments shown in Fig. 3a and 3b to compare the resulting exploration locations.
Fig. 3c and 3d show the capture locations of panoramas in a simple indoor envi-
ronment spanning a space of 8× 14 m2. High level results of each iteration of the
simulation are summarized int Table 1.

The benefit of the angle enhanced occupancy grid approach may be seen by a
detailed analysis of image coverage of the 2D surfaces in the Hallway environment.
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Fig. 3: (a) Curving hallway environment used with 1 robot; (b) larger office environ-
ment used with 5 robots; and simulation results for the curved hallway for frontier
(c) and angle aware (d) planning methods. The red line shows the path of the robot
and the blue circles represents panorama capture locations.
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Table 1: Summary of the area covered and panoramas captured by each method in
the Hallway (Fig. 3a) and Office (Fig. 3b) environments.

Environment Method Area Covered (m2) Panoramas Captured

hallway angle aware 110.9 11
hallway frontier 105.9 6
office angle aware 572.0 140
office frontier 571.3 38

As a proxy for data quality, we consider the maximum image size of every 10 cm
segment of wall across all simulated panoramas using a linear imaging resolution
of 8229 pixels for each 360◦ panoramic image as used by the experiments in [9].
Visibility is calculated for each decimeter as a whole by ray-casting from the cap-
ture location to the center of a wall segment. This is a simplification of the benefits
of multiple observations, but is immediately applicable to common tasks such as
optical character recognition of writing on walls, or face recognition applied to pic-
tures on walls. Image size relates to our approach in so far as shallow observation
angles correspond with lower resolution imaging of a surface. Put plainly, though
we are not optimizing specifically for this metric, we expect some correlation. Note
that while the numbers used throughout our analysis are arbitrary, they provide a
context to compare each method that proves valuable regardless of the exact image
resolution chosen.

For the set of simulated experiments shown in Fig. 3c and 3d, the frontier ap-
proach fully explored the Hallway environment after collecting 6 panoramas, while
the angle aware approach selected 11 locations to faithfully capture all surfaces.
With these panorama collection locations, we can calculate that 33.5% of wall seg-
ments observed during the frontier exploration strategy were captured by fewer than
20 pixels in any given panorama. For the angle enhanced occupancy grid approach,
only 11.4% of wall segments were observed below the same threshold resolution.
If we evenly subdivide the frontier exploration trajectory to result in an equivalent
number of panoramas (“augmented frontier”), 17.9% of wall segments are observed
below the resolution threshold. This demonstrates that angle sensitivity in the ex-
ploration strategy results in substantially fewer “blind spots” along surfaces in the
environment as it has more information with which to plan. A naı̈ve increase in
panorama locations alone, however, does not result in the same coverage gains.

The prevalence of low resolution blind spots in the augmented frontier strategy
is visible in the overlayed histograms in the lower-right of Fig. 4. In this figure, the
green histogram bars of the augmented frontier observations stand out on the left
of the chart. Precisely where these blind spots arise may be seen in the top row of
Fig. 4 where the light blue wall segments on the right side of the map approximately
one third of the way up the image, for example, indicate poor coverage.

Lastly, Fig. 5 shows the panorama capture locations for a team of five robots
deployed in the office environment shown in Fig. 3b. Initially each robot balances
capturing local space with pushing into uncharted territory. As each robot explores
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more space, the simple assignment strategy ensures that each robot does not interfere
with its neighbor.

3.2 Experiments

We have also conducted live experiments in the space shown in Fig. 6b which cov-
ers an area of approximately 5× 5 m2. The two differential drive ground robots
shown in Fig. 6a traversed the environment to collect panoramas, sharing maps and
goal locations as described in Section 2.3. Each robot was equipped with an Asus
Xtion Pro Live RGBD camera providing synchronized color and depth frames for
the panoramas and spoofing a laser rangefinder for construction of the angle occu-
pancy grid used during planning. All software was written in C++ and executed on

Fig. 4: Top row: map renderings with walls colorized by the resolution at which they
were covered for frontier (left), augmented frontier (center), and angle aware (right)
approaches. Hue indicates imaging resolution with red indicating high resolution,
and blue indicating low resolution. In grayscale, the less saturated wall segments
indicate poor coverage. Panorama capture locations are denoted by green circles.
Bottom row: histograms of pixels per decimeter for augmented frontier (left), angle
aware (center), and augmented frontier overlaid on angle aware (right).
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an Odroid-XU4 single board computer on-board the robot running Linux and the
Robotic Operating System (ROS). Localization was provided by an external motion
capture system.

In order to predict future measurements and compute CSQMI, several parameters
were specified. Panoramas were modeled as a collection of 360 beams distributed
over the interval [0,2π). Given a map resolution of 0.05 m, increasing the number
of beams only resulted in additional dependent beams which intercepted the same
cells and would be factored out of the CSQMI calculation. Values of zmin = 0.5 m
and zmax = 4.5 m were used for the minimum and maximum range of the Xtion, and
the noise was modeled with σ = 0.03.

The results of the experiment can be see in Fig. 6c with the two robots beginning
at {−2,0} and {−2,1.5} respectively. Starting at the same time, the team executed
our exploration strategy simultaneously and collected a total of 13 panoramas. Op-
erating in proximity, the team successfully avoided capturing panoramas from the
same location demonstrating the effectiveness of our proposed multi-robot coordi-
nation strategy.

4 Conclusion and Future Work

Panoramas comprised of images collected from an RGBD sensor provide a new
way to generate high fidelity representations of environments without demanding
significant memory resources. This opens up the need for new exploration strate-
gies that leverages the unique perceptual characteristics provided by the sensor. Our
angle aware exploration strategy enables a team of robots to effectively map an
unknown environment by searching for locations that yield high information gain
while accounting for diverse perspectives when creating a comprehensive 3D map.
Since the approach is computationally efficient, it can be used by a wide variety
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Fig. 5: Five robots collaboratively exploring an office environment after 4 panora-
mas (left) and after 10 panoramas (right).



12 Daniel Mox, Anthony Cowley, M. Ani Hsieh, and C. J. Taylor

of robotic platforms, even ones with limited computational resources. Furthermore,
the approach places minimal demands on inter-agent wireless communication and
computation at both the planning and coordination level.

As depth panoramas contain rich information about the environment, an alterna-
tive approach could be constructing and using them online directly in the planning
phase. This has the added benefit that the final map is included in the planning loop
which ensures some level of quality. Additionally, extending this approach to plat-
forms not constrained to the plane such as unmanned aerial vehicles would require
modifications to the angle enhanced occupancy grid employed. However, we believe
the proposed exploration strategy will enable heterogeneous teams of robots to bet-
ter leverage the distinct perceptual and mobility capabilities of the various sensing
resources within the team. These are all directions we are pursuing for future work.
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Fig. 6: The ground robots (a), lab space used for live experiments (b), and experi-
mental results showing the panorama capture locations for the two robot team (c).
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