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Abstract— In this work, we present an information based
exploration strategy tailored for the generation of high reso-
lution 3D maps. We employ RGBD panoramas because they
have been shown to provide memory efficient high quality
representations of space. Robots explore the environment by
selecting locations with maximal Cauchy-Schwarz Quadratic
Mutual Information (CSQMI) computed on an angle enhanced
occupancy grid to collect these RGBD panoramas. By em-
ploying the angle enhanced occupancy grid, the resulting
exploration strategy emphasizes perspective in addition to
binary coverage. Furthermore, the goal selection strategy is
improved by using image morphology to reduce the search
space over which CSQMI is computed. We present experimental
results demonstrating the improved performance in perception
related tasks by capturing panoramas using this approach, near
frontier exploration, and a control of logging images at regular
intervals while teleoperating the robot through the workspace.
Collect imagery was passed through an object detection library
with our perspective aware approach yielding a greater number
of successful detections compared to near frontier exploration.

I. INTRODUCTION

A central pillar of robotics research is the development of
efficient autonomous mapping and exploration strategies with
the attendant development of suitable representations of the
environment. Suitable representations serve as a prerequisite
for fundamental tasks such as exploration and localization,
with a plethora of forms emerging to suit each case. Metric
maps that render spatial attributes in terms of their location
in a shared coordinate frame have enjoyed immense popu-
larity in the literature. Examples of de facto standards for
metric maps include occupancy grids for exploration [6] and
landmark maps for simultaneous localization and mapping
(SLAM) [18]. On the other hand, topological maps seek to
relate semantic information about the environment gleaned
from sensor observations, and have been used to aid in rapid
exploration [4] and efficient task allocation [16].

In typical SLAM scenarios, map representations are tai-
lored to suite the localization and mapping system. However,
choices made in support of those goals may not be well-
suited for other uses of map data, such as object recognition.
An example can be found in landmark based maps where
only a few feature patches are extracted from an entire source
image, while in voxel based grids the detailed geometry of
point clouds are lumped into a small number of cells. This
compression of sensor data has only been magnified with the
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emergence of RGBD cameras and LiDAR. These sensors
combine depth and visual information that can be used to
create dense, high fidelity three dimensional maps [19], but
the torrent of available data must must be carefully navigated.

New approaches using RGBD cameras include the in-
fluential work of Newcombe in which dense mapping and
tracking is achieved by fusing depth frames for surface
reconstruction [14]. Henry employed surfels, e.g., surface
orientation, patch size, and color, gleaned from RGBD
frames to build 3D maps of indoor environments [8]. Recent
work by Taylor [17] focuses on panoramic views comprising
multiple depth frames captured at a location. Panoramic
depth images are advantageous for mapping because they
provide both spatial information for motion planning and
fine grained detail for object recognition. Furthermore, when
compared to traditional grid based approaches, panoramic
images have the potential to provide significantly more detail
while consuming only a modest amount of memory resulting
in better scaling characteristics.

Recent advances in our understanding of information
theory and how to apply it to the robot exploration problem
have lead to a slew of new algorithms based on a powerful
principle: the map provides hints about what observations to
expect at different locations and vice versa. This notion is at
the heart of mutual information, which seeks to quantify the
amount of information one random variable contains about
another [3]. Julian demonstrated that mutual information
eventually drives the robot towards unknown space and used
it as an objective function for autonomous exploration using a
range sensor [10]. A similar approach was shown by Charrow
who used Cauchy-Schwarz Quadratic Mutual Information
(CSQMI), a metric closely related to mutual information,
to guide a robot equipped with an RGBD camera to map an
unknown environment [2].

Other works combine object detection with robot mobility.
As a part of the Multi-Autonomous Ground-robotic Inter-
national Challenge (MAGIC), Reid demonstrated a multi-
robot exploration approach which detected faces and objects
of interest by periodically sampling a camera attached to
the robot [15]. Ekvall developed a system where a service
robot augmented a metric map with semantic information
and detected object locations while being lead through a
space [5]. And Menger et. al. won the Semantic Robot
Vision Challenge with a robot that explores an unknown
environment while seeking to recognize objects by selecting
views for a camera weighted towards unobserved space [12].

We build upon our previous work in [13] which developed
an information maximizing exploration strategy for teams of
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robots to map an unknown space. In that work we introduced
a novel spatial grid representation that emphasizes perspec-
tive in addition to coverage to guide robots in exploring
unknown spaces while collecting panoramas used to create
a detailed map of the environment. Building on the same
foundation, this work introduces an improved goal selec-
tion algorithm and details a set of experiments comparing
the performance of our approach. In particular we pass
imagery from panoramas collected using perspective-aware
planning through an object detection library and compare the
results against (1) panoramas collected using near frontier
exploration and (2) images logged at regular intervals by
teleoperating the robot through the space with the camera
pointed at scene geometry.

II. METHODOLOGY

To provide a complete overview of our approach we start
with a summary of our previous work in Sections II-A and II-
B and detail the improved goal selection strategy in Section
II-C. The objective of our work is to effectively explore an
unknown environment and to collect high resolution RGBD
panoramic images that can be used to produce a detailed,
memory efficient representation of space.

There are a number of advantages to using panoramic
imagery to represent the environment over more common
grid based methods [17]. Unlike grid or voxel methods,
which devote significant resources to represent regions of
empty space, panoramas capture interesting scene geometry
and nothing more as free space is implicit. Thus, they
afford a high level of detail for the memory consumed,
a desirable property when exploring realistic, expansive
environments. Another advantage is that panorama synthesis
can be performed on-board the robot alleviating the need
for costly network transfers. Further information regarding
RGBD panoramas and their construction can be found in
[17].

In this work we focus on the development of an ex-
ploration strategy that selects the locations in an unknown
environment at which the robot captures panoramas. This
goal is comprised of two main tasks: 1) capturing panoramas
an constructing local maps used for planning and 2) selecting
new locations at which to collect additional panoramas. The
following subsections detail each part of our approach.

A. Angle Occupancy Grid

In this work, we employ the 2D angle occupancy grid [13]
to represent the workspace. The angle occupancy grid takes
the familiar grid map and adds perspective by dividing each
cell into a fixed number of bins, each an evenly proportioned
slice of the 360◦ horizontal field of view. For example, an
angle occupancy grid with four bins would account for the
cardinal directions. In general, typical mapping strategies
emphasize coverage of space with no consideration for
perspective. While this is suitable in some situations, e.g.,
navigation, a map that can offer clear and diverse views of
surfaces within the space would be useful and advantageous
to a wide variety of applications. The 2D angle occupancy

grid accounts for both perspective as well as coverage. To
integrate new observations into a map represented using a 2D
angle occupancy grid, only the bin corresponding to the angle
at which the cell was observed needs to be updated, with
the exception of free cells which appear the same regardless
of the angle of incidence. Thus, a previously updated cell
appears as unobserved when viewed from a new perspective
and can significantly impact the selection of frontier locations
for exploration.

B. CSQMI

The goal planner is tasked with identifying panorama
capture locations that both expand the current understanding
of the environment and afford multiple and diverse views
of space. We build on our previous work in exploration
[13] based on the algorithm presented in [2], which uses
Cauchy-Schwarz Quadratic Mutual Information to select
poses at which a predicted sensor measurement maximally
decreases the uncertainty of the underlying occupancy grid.
A more familiar objective function often used in exploration
scenarios is mutual information (MI), which can be expressed
in terms of Shannon’s entropy and conditional entropy. While
MI and CSQMI are not directly related, they have been
shown to produce consistent results in an exploration setting
[1]. For our problem, the key difference between MI and
CSQMI is computational efficiency; while MI requires costly
numerical integration to solve [10], CSQMI admits a closed
form solution which can easily be computed online.

We represent panoramas as collections of range mea-
surements, modeled as beams with Gaussian noise, evenly
distributed 360◦ about the capture pose and use the afore-
mentioned angle occupancy grid to infer a distribution over
possible future measurements. Then, the expected informa-
tion gain of a single beam k in a panorama, zk, at a candidate
location, x, can be computed by considering the cells in the
angle occupancy grid intercepted by the beam:

ICS [c; zk | x] = log
C∑
l=0

wlN (0, 2σ2)

+ log

C∏
i=1

(o2i + (1− oi)2)
C∑

j=0

C∑
l=0

p(ej)p(el)N (µl − µj , 2σ
2)

− 2 log

C∑
j=0

C∑
l=0

p(ej)wlN (µl − µj , 2σ
2), (1)

where C = |c|, µi is the distance along the beam of the center
of cell ci, oi = p(ci = 1) is the probability that the ith cell in
c is occupied, p(ej) is the probability that the first occupied
cell in c is cj and N (x, σ) = 1/

√
2πσ2 · exp{−x2/2σ2}.

Additionally, each wl is calculated from:

wl = p2(el)

C∏
j=l+1

(o2j + (1− oj)2), (2)

with 0 < l < C, w0 = p(e0), and wC = p2(eC).
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Following the beam independence assumption, the ex-
pected information gained from capturing a panorama at x
can be found by combining the contribution from each beam:

ICS [m; z | x] =
K∑
i=0

ICS [c; zi | x]. (3)

We refer the interested reader to [2] for a complete derivation
of Equations 1 - 3 along with a thorough treatment of
predicting sensor measurements and computational complex-
ity. Note that beams often intercept the same cells along
their length violating the CSQMI independence assumption.
However, taking beam dependence into account requires
computing the joint distribution over all overlapping beams
in the panorama which is intractable. This shortcoming can
be assuaged by computing CSQMI over a subset of beams in
the panorama that can reasonably be considered independent
[2].

From Equation 3, an information maximizing exploration
policy emerges of the form:

x∗ = argmax
x∈X

ICS [m; z|x], (4)

where X represents the set of all candidate capture locations.

C. Goal Selection

While approximations can be made to Equation 3 in
order to boost efficiency, solving Equation 4 by searching
over all free space is computationally wasteful and becomes
costly as the map grows. In our previous work, a fixed
number of candidate poses at which to compute CSQMI were
selected by randomly sampling free space. However, as free
space grows, the sampling becomes more and more sparse
ultimately inhibiting exploration due to a lack of samples
near unexplored regions.

In this paper we propose a new candidate goal selection
approach based on image morphology. Beginning with the
2D occupancy grid representation of the environment, a
binary image is generated by applying a threshold to the
occupancy values. Noise inherent in the map is reduced
by performing dilation on the occupied space, then the
remaining free space is reduced to a pixel wide connected
skeleton using a thinning algorithm. This skeleton represents
a compressed version of free space and also acts as a
Voronoi diagram, with skeleton pixels residing at roughly
equal distances from nearby obstacles. Finally, CSQMI can
be computed for the cell locations belonging to the skeleton
and a suitable goal chosen.

While a search over the skeleton will yield the point
with the greatest CSQMI, there are often local maxima
in other regions of space also yielding large information
gains. Identifying these alternative goals becomes crucial if
a team of robots is tasked with exploration, wherein each
agent needs a distinct goal to visit, or if other factors are
considered such as travel cost, where a closer goal with
slightly lower CSQMI might be chosen over the maximum
but distant solution. One could apply a distance threshold

or clustering algorithm to seek out these local minimum,
however, an even simpler solution exists. At the location
of a captured panorama, CSQMI is at a minimum as all
cells within the sensors range have been observed, with
additional observations from the same perspective yielding
diminishing information gains. Additionally, since panorama
capture locations lie on or nearby the skeleton, we can look
to past capture points as a natural means of partitioning
the skeleton into regions. Then, local maxima can be found
by searching for the maximum along each segment of the
partitioned skeleton.

Another consideration is the relative proximity of the
skeleton max to the true max, found by exhaustive computa-
tion over all free space. While we make no formal claims in
this regard, we note that in practice the skeleton max rarely
strays more than a fraction of a meter away from the true
max with the two often coincident. This should come as no
surprise since skeleton points lie at points equally spaced
between obstacles and thus are excellent vantage points of
surrounding surfaces. The CSQMI reward surface computed
over the entirety of free space along with the skeleton are
shown in Fig. 1.
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Fig. 1: CSQMI reward surface for an indoor office environ-
ment displayed as a cool heat map (turquoise is low and
magenta is high) with the skeleton segments overlaid. The
maximum computed over all free space lies close by the
skeleton max. An additional goal is found for the upper
skeleton segment.

III. EXPERIMENTS

A challenge facing any evaluation of exploration strategies
is defining what makes one exploration of an unknown
environment better than another. While a map itself is
generally intended for navigation, we are producing a map
annotated with panoramic images, so we can consider an axis
of measurement beyond accurate representation of navigation
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hazards and speed of mapping: are the collected images
generally useful?

To focus on one example of using image data garnered
from an exploration, we evaluate how useful the collected
imagery is to a subsequent object recognition task. The
overall claim is that a perspective aware exploration strategy
yields more thorough, better quality image coverage of the
environment. We evaluate this claim by considering an ex-
ploration task carried out by a robot building a map sparsely
annotated with panoramic images. The robot explores an
environment, and its collected data is then fed into an object
recognition task that can identify what was found in the
environment. We then compare the performance of the data
garnered from our approach, using CSQMI on an angle
occupancy grid, with (1) exploration driven by teleoperation,
in which a human continuously aims the camera at objects
of interest, and (2) an autonomous frontier exploration strat-
egy operating on a binary occupancy grid that fills out a
map without considering image quality. During frontier and
CSQMI exploration panoramas are captured at the goal loca-
tions prescribed by each algorithm while during teleoperation
images are logged at regular intervals while the robot is
driven through the space. The frontier method is a common
baseline for exploration strategies being both simple and
effective at building a map of unknown space. Teleoperating
the robot with the camera aimed at scene geometry represents
a best case scenario where objects are clearly captured in the
logged images and easily decipherable by a detection library.
Each approach to exploring the environment builds a useful
navigation map, but we can quantify the utility of the image
data collected during the exploration.

The presented perspective aware mapping and exploration
system was implemented in C++ with ROS and run on the
scarab platform developed at the University of Pennsylvania
(Fig. 2a). The Scarab is a differential drive ground platform
with an ASUS Xtion Pro Live camera providing RGBD
imagery and a Hokuyo UTM-30LX for laser based local-
ization using the popular gmapping ROS packaged which
implements the SLAM approach outlined in [7]. Live exper-
iments were conducted at the Penn Engineering Research and
Collaboration Hub (PERCH), a visually dense environment
providing a diverse set of geometry and objects interesting
for panorama capture (see Fig. 2b).

IV. RESULTS

We evaluate the presented perspective aware planning
approach based on its ability to collect imagery useful
for object detection. Five objects from the COCO dataset
[11] where distributed throughout the exploration space
and the collected imagery was processed using the Ten-
sorFlow object detection library using one of the avail-
able models trained on the COCO dataset, in particu-
lar faster rcnn resnet50 coco [9]. The performance
(i.e. number of objects detected) of our approach was pitted
against the near frontier exploration algorithm, where the
nearest border between free and unknown space is selected as
the next goal, and a “ground truth” run where the robot was

(a) (b)

Fig. 2: (a) the scarab differential drive ground platform and
(b) a portion of the space at PERCH used in the experiments.

teleoperated through the space while logging images with the
camera kept facing surface geometry (a best case scenario
for object detection). Four sets of trials were conducted and
between each the target objects were redistributed through-
out the space in locations specifically chosen to provide a
challenge to the autonomous exploration methods, namely
in orientations that only visible from certain viewpoints.

trial 1 trial 2 trial 3 trial 4
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frontier CSQMI teleop

Fig. 3: number of objects detected for each planning method
for each trial.

trial 1 trial 2 trial 3 trial 4

CSQMI 8 9 8 8
frontier 5 6 6 6

TABLE I: the number of panoramas captured by each method
during each trial.

Shown in Fig. 3 are the results of the four sets of trials
with the corresponding number of panoramas captured by
each method shown in TABLE I. Fig. 4 shows the paths
and panorama capture locations of the robot during a set of
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trials. As expected, the ground truth run performed the best
followed by our perspective aware planning approach and
the near frontier method.
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Fig. 4: robot pose and panorama capture locations during trial
1 for perspective aware exploration and frontier exploration
as well as locations and camera orientation of images logged
while teleoperation

The impact of perspective aware planning is illustrated
by Fig. 4. Frontier exploration captures fewer, sparsely
distributed panoramas and concludes once the space has
been completely covered, neglecting to travel to the end
of the corridor in the top of the space. The perspective
aware approach chooses to collect an additional panorama in
this region as it yields sufficiently new views of surfaces, a
consequence of the angle occupancy grid, ultimately leading
to the detection of an object located there. Fig. 5 shows
a stark difference. The tennis racket is clearly captured by
our perspective aware approach (Fig. 5b) while it is hardly
visible but for a side profile in the frontier panorama and
goes unrecognized by the detection library (see center of
Fig. 5a). In fact, poor views of objects of interest was the
leading cause of detection failures. Note that no knowledge
of object locations was given to the autonomous exploration

(a)

(b)

(c)

Fig. 5: panorama frames captured during trial 1 showing the
best view of the tennis racket in the corridor at the top of
the map from (a) near frontier and (b) CSQMI and (c) the
clearest image collected during teleoperation.

strategies; instead we rely on their implicit determination of
map completeness.

It may seem trivial that the greater number of panoramas
captured by our angle-aware approach would lead to more
object detections than the frontier method. However, simply
capturing more imagery does not solve the problem. Consider
a simple heuristic directing the robot to collect an additional
panorama at the midpoint of the path to the nearest frontier.
In this case the frontier approach would collect 9 panoramas
as opposed to 8 by our method. But after collecting the 9th
panorama at the blue circle (approximately (x, y) = (3,−1)
in the map shown in Fig. 4) no more frontiers exist in the map
and exploration would conclude without additional views of
the upper segment of the environment. This limitation was
also noted in our previous simulations in [13] and highlights
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the limitation of binary coverage as a proxy for map quality.
The merit of our method lies not the number of panoramas
collected but where they are captured, offering diverse views
of space that result in more successful obstacle detection.

V. CONCLUSIONS

In this paper we have presented an information based
exploration algorithm using panoramas that accounts for
perspective in addition to coverage. We introduced a goal
selection strategy that efficiently identifies useful panorama
capture locations by computing mutual information over a
skeleton of free space. The effectiveness of our approach
was demonstrated through a set of experiments where the
robot was tasked with exploring a space, and the collected
panoramas where then used to detect objects. Our method
resulted in more objects detected as compared to near frontier
exploration.
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