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Abstract—In this work, we introduce Mobile Wireless In-
Jfrastructure on Demand: a framework for providing wireless
connectivity to multi-robot teams via autonomously reconfig-
uring ad-hoc networks. In many cases, previous multi-agent
systems either assumed the availability of existing communi-
cation infrastructure or were required to create a network
in addition to completing their objective. Instead our system
explicitly assumes the responsibility of creating and sustaining
a wireless network capable of satisfying end-to-end communi-
cation requirements of a team of agents, called the task team,
performing an arbitrary objective. To accomplish this goal, we
propose a joint optimization framework that alternates between
finding optimal network routes to support data flows between
the task agents and improving the performance of the network
by repositioning a collection of mobile relay nodes referred
to as the network team. We demonstrate our approach with
simulations and experiments wherein wireless connectivity is
provided to patrolling task agents.

I. INTRODUCTION

Wireless networks have become a ubiquitous part of
modern life. Today, technologies such as Wi-Fi and cel-
lular networks blanket vast portions of the globe enabling
unprecedented access to information. As wireless communi-
cation becomes more tightly integrated into everyday life
it is increasingly normal to presume on it’s availability
and performance. However, providing widespread wireless
connectivity at scale requires tremendous effort both in
coordinating large distributed systems and deploying and
maintaining costly infrastructure.

While areas not covered by fixed infrastructure continue
to shrink, there still remain cases where existing wireless
networks are unavailable such as underground environments,
rural regions, and areas affected by natural disaster. In these
scenarios, reliance on existing technology is not possible and
new approaches to providing connectivity must be explored,
particularly as it relates to fast deployment of wireless
infrastructure.

With these challenges in mind we introduce a system for
delivering Mobile Wireless Infrastructure on Demand. Our
approach leverages mobile robots equipped with wireless
hardware, referred to as the network team, to create and
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sustain communication networks in dynamic environments.
Client users, referred to collectively as the task team, seek-
ing to accomplish objectives requiring communication can
connect to the provided network and the network nodes
reconfigure and route information to satisfy their demands.
While our philosophy would extend to any autonomous
robotic platform, due to their versatility, we consider Un-
manned Aerial Vehicles (UAVs) equipped with IEEE 802.11
communication hardware which act as an ad-hoc network.

A considerable amount of research has been devoted
to studying the effect communication links and wireless
networks have on the ability of agents to coordinate. One
common approach leverages concepts from algebraic graph
theory to maximize or preserve the algebraic connectivity of
a state dependent Laplacinan [1]-[6] which can be solved
in both a centralized [1]-[3] and decentralized manner [4]—
[6]. Wireless channels themselves are extremely difficult to
predict and approaches can be categorized by the abstrac-
tion they use to model point-to-point communication. Disk
models are the simplest and consider all agents within some
distance to be in communication range [4], [S], [7], [8]. Other
approaches employ a function of the inter-robot distance,
often exponential decay, to model the channel [1]-[3], [6],
[9]-[11]. Probabilistic models seek to honor the inherent
uncertainty associated with predicting wireless channels by
provided both an expected channel rate and corresponding
variance [12]-[16].

In this work we take a similar approach to [17] and more
recently [18]. Both utilize a robust routing communication
protocol, which seeks to overcome channel uncertainty using
link redundancy, to judge the feasibility of network config-
urations during planning. In this work we take a different
approach by directly seeking configurations which maximize
network performance. Additionally, both works abstract the
task as a potential function that must be driven to zero by
a single team of agents also responsible for satisfying the
associated communication requirements. Instead, we explic-
itly separating agents into task and network teams. This has
multiple benefits. First, it decouples network considerations
from task planning, which is often a challenging problem
by itself. Secondly, it allows our approach to remain task
agnostic. While many robotic tasks can be reduced to poten-
tial functions (e.g., visiting a goal location) others cannot or
must be reasoned about in a more abstract manner. Instead
of making limiting assumptions about the type of objective
being performed, we define an interface where end-to-end
communication rate requirements are provided to the task
team by the network team. In this way our system can



Fig. 1. An example network configuration with task agents as red circles,
network agents as blue squares, task-network connections as solid red lines,
and inter-network connections as dashed blue lines.

be applied to any multi-agent system that can specify its
communication requirements.

The rest of this paper is organized as follows: in Section
we present our methodology, divided into channel modeling
(IT-A), network flows (II-B), probabilistic routing ([I-C)), and
network reconfiguration ([I-D), in Section [[IT] we discuss our
simulations and experimental results, and finally in Section
we provide concluding remarks.

II. PROBLEM INTRODUCTION AND METHODOLOGY

Consider Fig. [T} consisting of a team of mobile robots
collaborating to complete a task requiring communication.
Instead of creating and sustaining a wireless network in addi-
tion to completing their objective, this task team presumes on
the ability to communicate while a different group of robots,
called the network team, provides the required infrastructure.
The network team positions itself in the environment and
routes packets such that the task team can go about their
objective without concern for the impact of their actions
on their ability to communicate. The focus of this paper
is on determining network team configuration and routing
variables to support the task team’s presumption.

Before proceeding, we introduce some common notation.
Suppose there are p agents in the task team and ¢ agents in
network team with n = p+ ¢ total agents. Zr and Zy repre-
sent the ordered set of indices of the task agents and network
agents so that |Zp| = p, |Zn| = q. Zr Uy = {1,2,...,n},
and Zr NZy = 0 (i.e. dual citizenship is not permitted). The
position of each agent is given by z; € R? and the state of the
combined teams is @ = [x1, x2, . .. ,:cn]T. The configuration
of the task team is xp = [xIT(l),...,xIT(p)]T and the

T

network team is xy = [SCIN(1), ... ,sz(q)}

A. Channel Model

In order to reason about the rate at which packets can
be transmitted in a network, it is necessary to predict the
state of wireless links between pairs of agents. In complex
real-world scenarios, this is in itself a challenging task with
a large body of research focused on establishing empirical
models across a wide range of hardware and environments.
In this work, we consider a model that seeks to 1) capture the
dominant characteristics of wireless channels without incur-
ring significant model complexity and 2) remain somewhat
hardware agnostic. In general, as the distance between two
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Fig. 2. Characterization of the expected rate function R(x;,x 4) in equation
(T and variance R(z;,z;) in equation @), where d = |lz; — x;|| is the
distance between the agents x; and x;, and Pr, = —53 dBm, n = 2.52,
PNO = —T70dBm, a = 0.2 and b = 0.6.

agents grows one can expect their communication rate to
decrease and the uncertainty associated with that estimate to
increase. This perspective emits a probabilistic approach to
channel rate modeling.

More formally, we consider a function R;;(z;,z;) € [0, 1]
representing a random variable of the normalized available
transmission rate of a point-to-point link. Such a value
depends on the randomness of the communication channel
which we assume can be described by an underlying dis-
tribution characterized by its mean and variance, Rij and
Rij, respectively. We consider the following characterization,
which is also plotted in Figure [}
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where erf(x) = # I, e~ dt is the Gauss error function,
Py, is the transmit power, n is the decay rate, Py, is the
noise at the receiver, and a and b are decay uncertainty
parameters. This model is formed by composing generic
models for received signal strength and bit error rate to obtain
a channel rate estimate [19]. Note that this model can be used
for a wide range of hardware by adjusting these parameters
accordingly. Furthermore, it can also accommodate noisy,
cluttered environments (e.g. indoor) where reliable estimates
are scarce by adjusting the uncertainty parameters a and b.

B. Network Flows

As the task team moves to accomplish its objective, data is
transmitted between source node(s) and destination node(s)
in the task team via the network team. These flows of
information are indexed by k € {1,2,...,K} with the



set of source and destination nodes for flow &k given by
Sk, Dy, € Ir, respectively. As an example, a foraging agent
i (Sk = {i}) in a collaborative mapping task might transmit
newly gathered observations of the environment to the rest
of the team (Dy, = Z7\Sk). Each flow requires a minimum
communication rate in order to be transmitted successfully.
The required minimum rate at source node ¢ for flow k is
given by m¥. For network team nodes that do not contribute
new packets to the network but simply act as relays, m% = 0.

Data packets are relayed through the network according to
routing variables a . € [0, 1] which represent the probability
or fraction of an arbrtrary time step node ¢ spends transmit-
ting data associated with flow k£ to node j. The set of all
routing Variables is denoted by «. Routing variables must
satisfy -,y < 1 as well as >, , oy < 1, which are
the upper bound on channel transmission and receiver usage
during a time step. Finally, task agents access the network as
clients; if task agent ¢ is the source of flow k then a =0Vy
(i.e. data is not returned to the source node) and srmllarly if
agent 7 is the destination then a = 0 V7 (i.e., destinations
nodes don’t rebroadcast data once it has been received). The
difference between data transmitted and received at a node,
called the rate margin, is given by:

b (o, x) Z af]Rij — Za?iRﬁ, 3)
j=1 j=1

and since the rates R;; = R(x;,x;) are random variables,
b¥ is also a random variable:

Ef(aa :B) = Z a?jRij - ZO/; Ryza (4)
j=1 j=1

bf (e, @) =D (o)’ Ry + Y (fi)’ Ry, (5)
j=1

where b¥ is the expected rate margin of node i for flow k,
and Bf is the confidence in the expected rate margin. In order
for packets to be routed through the network and delivered
as required it is sufficient to ensure the flow of data into and
out of each node remains balanced, preventing unbounded
accumulation of packets at any node:

BE > mb. (©)

C. Probabilistic Routing

Since the rate margin b¥ is a random variable [cf. expres-
sion (3)], equation (6) can only be satisfied in a probabilistic
sense. Namely,

P [0F () > mb] > 1 - ¢, (7)

where € is the risk of the constraint being unsatisfied and
1 — € is the confidence with which the constraint is met.
Thus, the pair (m%,1 — ¢;) forms the communication rate
specification requested by the user. Specifically, the i-th user
demands for the k-th flow an expected communication rate
of mk with confidence 1 — ¢.

For a wide class of probability distributions expression
can be satisfied using Chebyshev’s inequality. However,
tighter bounds can be achieved if the distribution is known. In
the following, we assume that the rate margin b¥ is normally
distributed and equation (3 can then be expressed as

Ef(a, x) — mf

Bf(a,m)

>0 (1 —¢p), (8)

where ®~1(-) is the inverse normal cumulative distribution
function. Now, we intend to find, given team configuration x,
the set of routing variables o which satisfy equation [§] There
may be many sets of routing variables « that satisfy equation
; we are interested in those that do so with the greatest
margin. Thus, a non-negative slack variable s is introduced
and the robust routing problem is posed as follows

maximize s (9a)
acA,s>0

B ok
subject to (@) —myi = s >d H1—e) (9b)

Ef(a,x)

for all ¢ and k, where A is the set of implicit routing
constraints composed of a . € [0, 1] (routing variables are a
probability), Zﬁk ai-‘j < 1 (bounded transmission usage),
Yk < 1 (bounded receiver usage), oj; = 0 for
i € Ir\Sk (destination nodes don’t transmit), j € Zr\ Dy
(packets are not returned to the source node). Following the
approach in [17], the optimization problem (9) can be posed
as a Second Order Cone Problem (SOCP) and a solution
obtained using an available convex solver. Note that the
solution to the optimization problem (9) supplies valid robust
routing variables given a feasible team state x; in other words
it says nothing about how the network agents x  should be
positioned.

Increasing the slack s is equivalent to increasing the
margin with which the probability constraints in equation
are satisfied. This can be accomplished by increasing
the expected value l_)f, by prioritizing channels with high
expected rate R;j, and/or decreasing the variance Bl, by
splitting routes between multiple nodes. For flows with
high requirement m” and low confidence 1 — ¢, packets
flow mainly through high rate channels; for flows with low
requirement and high confidence, packets are split along
multiple routes (This is illustrated in Figure [3). Thus, the
solution to the robust routing problem (9) prioritizes end-to-
end performance while seeking to be robust to point-to-point
failures, accounting for model uncertainty.

D. Network Reconfiguration

Solving the robust routing problem (9) allows us to find
the optimal routing variables afj given a network team
configuration xy and task team configuration 7. Now, we
are interested in finding the network team configurations x
that satisfy the constraints of problem (@) (recall only the
positions of the network agents can be controlled). As the
task agents move, the network agents must also adjust their

positions to ensure that the communication requirements are
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Fig. 3. Optimal solutions of the robust routing problem for different margin
and confidence requirements. High margin with low confidence prioritizes
the strongest links while low margin with high confidence splits traffic
among the routes.

met. Unfortunately, the rate margins in equation (@) are non-
convex in x, precluding some kind of joint optimization
of av and x directly. While the gradient of slack s with
respect to the team configuration could be computed from
the rate estimation function presented in Section we are
interested in developing a system that works for a family of
rate functions meeting the requirements outlined in Section
In other words, we assume that a rate function can
be efficiently queried for R;;,R;; but do not make further
restrictions to its form (e.g., that it be differentiable).

Similar approaches solve this problem by using a sampling
based gradient approximation to drive the team away from
configurations that violate the communication requirements
all while minimizing a task potential function [17]. In our
case, the network team’s singular focus is to improve the
degree to which the node margin constraints of equations
(@) are met (i.e. adjusting xx to further increase the slack
s in the robust routing problem (9)). While one method
for doing so is to follow an approximate gradient, a more
direct approach is to leverage the same samples to search for
configurations that improve on the solution of (9).

Given a solution to the robust routing problem, the con-
straint closest to being violated can be computed from
equation (8) by selecting the minimum value

b (a, z) — mk

- L@ ' 1—e)|, (10)
W (o, x)

v(a, &) = min
ik

where v(a, ) > 0 for all feasible configurations. Further-
more, the greater v(a, &) becomes, the more room the slack
s has to grow in (9). Assuming solutions to the optimization
problem () do not change significantly over short distances,
equation (I0) provides a method for checking if a neighbor-
ing location results in a better network configuration (one
with higher slack) much more efficiently than resolving the
SOCP. This insight forms the foundation of the local control
scheme outlined in Algorithm [I]

Algorithm [If is designed to be run in a continuous loop
where the number of sampled configurations, max_it, is se-

Algorithm 1 Local controller
Input: xy,z7, Ty
Output: z7,
I: @ = SOCP([zT,zN])
2: a* = SOCP([xr, Th])
3 v =v(a*, [xr, zy])
4: for i =0 to max_it do
5. xp, =draw_sample(xy)
6
7
8
9

Up = v(a, [mTvmp])
if v, > v* then
TN =Tp
. end if
10: end for
11: return T3, o

lected to respect the real-time requirements of the system. It
takes in the current network and task team configurations and
the target network configuration from the previous iteration,
x’, and returns an updated target network configuration,
x’y (note that algorithm E] is executed in a continuous loop
and may run again before xy reaches x7%;). In Steps 1
and 2, the set of optimal routing variables with respect to
the current team configuration, o, and with respect to the
current task team and optimal network team configuration,
o™, are computed by solving the robust routing optimization
problem (@) (SOCP(:) returns the routing variables of the
associated solution). It is necessary to recompute a* as the
task team may have moved since the last call even though
the value of x; remains the same between iterations of
the algorithm. Step 3 finds the constraint closest to being
violated for the current optimal configuration, which serves
as the benchmark candidate configurations must beat in
the local search performed in Steps 4-10. The function
draw_sample(z ) returns a collision free (||z; —x;|| > d.
for 4,5 € {1,...,n} and i # j, given the safety margin
d. > 0) network team configuration in the neighborhood of
oy drawn from some probability distribution. In our case,
samples were drawn from a normal distribution centered at
the current configuration. Then if the candidate configuration
x,, is found to be better, the optimal configuration is updated
and the search continues. Since x; persists across iterations,
Algorithm [T| drives the network team towards locally optimal
network configurations.

III. NUMERICAL RESULTS
A. Simulations

In order to verify our proposed algorithm, we implemented
our system in ROS [20] and performed a set of simulations
using Gazebo [21]. The state of each link, and in turn the
network, was judged using the model described in equations
(T, @). We considered a scenario where a team of three task
agents patrolling a perimeter desired to exchange information
but their relative distance precluded supporting communica-
tion via direct links. Thus, we deployed a team of network
agents to act as relays, ensuring critical information from the
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Fig. 4. Representative team configurations for the p = 3 task agent patrol
with radius 20m showing a) the fixed configurations used for comparison
and mobile network teams comprised of b) ¢ = 1 ¢) ¢ = 3 and d) ¢ =
6 agents. Task agents are represented as blue circles, network agents as
red crosses and their recent paths as dashed and solid lines, respectively.
Grayscale lines connected the agents are network flows, with darker lines
signifying links with higher usage.

patrolling agents was delivered to the others.

The communication requirements of the task team were
modeled as three flows: S; = {1} with D; = {2,3}; Sp =
{2} with Dy = {1,3}; and S5 = {3} with D3 = {1,2}.
For each flow the required margin was m! = 0.15 with
confidence 1 —¢€; = 0.7. The channel parameters in question
were chosen for IEEE 802.11 [16] with exact values listed
in Fig. 2] Our system does not directly prescribe the number
of agents needed to satisfy the task requirements. Thus, we
conducted simulations with network teams of 1, 3, and 6
agents running our local controller. As a point of comparison,
we also conducted the same simulations with a fixed network
team deployed in a configuration to best cover the task space
but not allowed to move with the task agents. The fixed
network configurations as well as snapshots of the mobile
network team in action are shown in the Fig. f]

The performance of the network team in each scenario was
measured as the average of the rate margins at the source
nodes: b%, b2, and bg. Since the optimization problem (]E[) is
only feasible if all flows are satisfied, this ensemble approach
is an effective measure of system performance. The average
rate margin of the fixed and dynamic teams are shown in
Fig. [}

Fig. (D) shows the configuration for a single network
agent. In this case, the fixed and dynamic configurations
coincide at the center of the circle: regardless of initial
position, our algorithm pulls the network agent to the optimal
configuration at the center and evenly distributes traffic
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(a) Resulting rates and 1 — e confidence bound with ¢ = 1 network

agent. Both the fixed and the dynamic team configurations are the same
and cannot support the demanded rate specification.
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(b) Resulting rates and 1 —e confidence bound with ¢ = 3 network agents.
The dynamic team successfully supports the demands while the fixed team
sporadically fails to do so
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(c) Resulting rates and 1—e confidence bound with ¢ = 6 network agents.
Both the fixed configuration and the dynamic configuration can support
the demand rate specification with the dynamic team performing better on
average

Fig. 5. Average rate margin and confidence bound at the source node for
p = 3 task agents requiring a rate margin of mi? = 0.15 with confidence
1—e€ = 0.7. The average rate margin of the fixed network team is shown in
red and the dynamic team executing our local controller in blue. The 1 — €
confidence bound for each margin is shown as the shaded region.

across the links. When ¢ = 1 the system cannot satisfy the
task requirements of m¥ = 0.15 and 1 — e = 0.7 and is only
able to support a rate around ~ 0.12 as shown in Fig.

For three agents, the fixed configuration was chosen to be
a triangle centered in the circle as seen in Fig. fi(a)] While
this fixed triangle configuration performed well when the task
team was aligned with it, the average rate margin suffered
as the task team moved away and ultimately was unable to
satisfy the communication requirements over the entire patrol
trajectory as illustrated in the grey regions of Fig. [5(b)] On
the contrary, the three agent network team running our local
controller converged to a triangle that rotated along with the
patrol agents (Fig. providing consistent communication
throughout the duration of the task.

Finally, a deployment with six network agents is shown
in Fig. f(d)] In this case the best fixed team configuration
is not immediately obvious. We opted for a space filling
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Fig. 6. A moving average of the a) delay and b) throughput for the live
experiment. Statistics from the test using probabilistic routing are in red and
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pentagon with an agent at the center to cover the interior of
the circle. With an increase in the number of agents their
relative positioning becomes less crucial; while the dynamic
network team performed better on average, the fixed team
was also able to support the required rate over the duration
of the patrol as evidenced in Fig.

B. Experiments

We also conducted experiments to demonstrate the feasi-
bility of our system on physical platforms using conventional
IEEE 802.11n WiFi. For these tests we used the Intel Aero
quadrotor research platform equipped with an Intel Atom
x7-28750 processor, Intel Dual Band Wireless-AC 8260 Wi-
Fi chip configured in IBSS (ad-hoc) mode, and Linux with
ROS. Those familiar with conducting wireless system tests
on physical platforms know the inherent difficulty of such an
endeavor. In particular, our system 1) is based a probabilistic
routing protocol and must be able to dynamically change
the gateways (i.e. destination node) used for system packet
routing 2) is centralized and must aggregating the state
information of and disseminate routing updates to every
agent in the network and 3) must gather gather meaningful
network statistics without infringing upon 1,2. While a
thorough treatment of each of these tasks falls beyond the
scope of this paper, a summary of each module follows.

The solution of problem (9) is a matrix of routing vari-
ables, o, that define where data streams should be directed
en route to their destination. Taking Fig. [3(a)] as an example,
node 2 can send data through node 3 or directly to node
1. Instead of choosing a gateway for each incoming packet,
we sample a fixed routing configuration from o and enforce
it for all packet transmissions over a chosen time window.
Provided this time window is sufficiently small compared
to the rate at which new versions of a are received, this
approximates the routing probabilities given by problem ().
On a Linux system, we accomplished this by adding and
deleting routing tables at the network layer.

Our system is inherently centralized as both problem
@) and algorithm (1) require full state information. We
arbitrarily nominate one of the quadrotors as the planning
node and subsequently require that o connect every agent
do it. In practice this can be accomplished by enforcing
additional flows for each agent to the planner node. Since
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Fig. 7. Snapshots of the agent paths and network routes at three different

points during the line experiment. Task agents are represented as blue circles,
the network agent as a red cross and their recent paths as dashed and solid
lines, respectively. Grayscale lines connected the agents are network flows,
with darker lines signifying links with higher usage. Units are in meters.

the frequency of routing updates is low (~ 1s) we utilize the
broadcast channel, which sends packets to all agents within
reach, coupled with a network flooding rebroadcast policy to
ensure every agent gets the latest copy of c.

Finally, for the task agent flows we utilized the iperf3
and traceroute Linux utilities to measure throughput and
delay. iperf3 spams the network interface with packets to
a given destination (just as a source node would) while
traceroute measures the round trip time of packets. Since we
are modifying the underlying routing table, any messages
that get send through the network interface are subject to
our routing protocol. The same applies to ROS messages.

Our experiment with three robots was conducted outdoors
at the Penn Engineering Research and Collaboration Hub
(PERCH) using one network agent maintaining a connection
between two task agents, one acting as a base station and
one free to roam. Fig. [6] shows the throughput and delay and
Fig.[/| shows the flight path of the robots during the test. We
collected statistics for a flow from the roving task agent to the
base station using 1) our robust routing protocol compared
against 2) a fixed, direct link between source and destination
not utilizing the intermediate network node. It is clear from
Fig.[6] that as the roving task agent moves away from the base
station the throughput drops and the delay grows for the case
with direct routing; however, for the test using our probabilis-
tic routing protocol the throughput remains constant even as
the direct link is severed, demonstrating the utility of our
system. Additionally, in Fig. [/| our local controller keeps the
network agent favorably positioned along the line connecting
the two task agents.

IV. CONCLUSION

In this paper, we have introduced a task agnostic archi-
tecture for providing mobile wireless network infrastructure
on demand. Network requirements defined through a task
independent interface are satisfied by our system that jointly
optimizes routing choices for packet transmission and net-
work node placement. As a result, a task team can achieve
their objective presuming on the availability of wireless
communication.
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