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Learning Connectivity-Maximizing Network
Configurations
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Abstract—In this letter we propose a data-driven approach
to optimizing the algebraic connectivity of a team of robots.
While a considerable amount of research has been devoted
to this problem, we lack a method that scales in a manner
suitable for online applications for more than a handful of
agents. To that end, we propose a supervised learning approach
with a convolutional neural network (CNN) that learns to place
communication agents from an expert that uses an optimization-
based strategy. We demonstrate the performance of our CNN on
canonical line and ring topologies, 105k randomly generated test
cases, and larger teams not seen during training. We also show
how our system can be applied to dynamic robot teams through
a Unity-based simulation. After training, our system produces
connected configurations over an order of magnitude faster than
the optimization-based scheme for teams of 10-20 agents.

Index Terms—Networked Robots, Multi-Robot Systems, Deep
Learning Methods

I. INTRODUCTION

ENSURING a team of robots remains in contact with one
another while accomplishing an objective has been the

focus of a considerable amount of research in the robotics
community. Indeed, most multi-robot systems operate on
the underlying assumption that robots can freely exchange
information in order to coordinate their actions. One com-
mon method for ensuring this condition is met considers the
network graph induced by the spatial configuration of the
robots coupled with an underlying communication model. This
problem formulation emits a graph theoretic approach focused
on maximizing or preserving the connectivity of the state
dependent communication graph [1]–[13] which can be solved
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in both a centralized [1]–[5] and decentralized manner [1],
[6]–[13].

Communication graph connectivity is inherently a heuristic
for network performance. This choice is based on the intuition
that the more connected a network is the easier information
flows through it. However, in practice, network performance
depends on the underlying routing protocol and the extent
to which maximizing graph connectivity directly translates
to improved performance is unclear. More recent work has
sought to bridge this gap by integrating aspects of wireless
systems into the planning problem formulation. In [14] the
authors propose a mobile router solution that optimizes end-
to-end bit error rate between a pair of nodes. Other work
goes even further by combining the node positioning and
packet routing problems [15]–[18]. While these methods more
accurately model the underlying wireless network they result
in computationally expensive, coupled optimization problems
that can be challenging to solve, even approximately.

In this work, we consider the problem of mobile wireless
infrastructure on demand introduced in [15] wherein mobile
relay nodes must be strategically positioned to facilitate com-
munication between task-oriented robots whose actions may
take them out of direct transmission range with one another.
While many of the aforementioned approaches offer solutions
to this problem, we lack a method that scales as the number of
agents in the network grows. Indeed, centralized approaches
to maximizing algebraic connectivity require solving costly
optimization problems that become prohibitively slow for large
teams. Decentralized variants rely on distributed optimization
which is iterative in nature and requires significant time
to converge. Likewise, the more sophisticated methods face
similar scaling challenges just to find feasible solutions.

To address this problem, we propose a data-driven approach
to maximizing connectivity that demonstrates attractive scaling
characteristics compared with existing methods. In particular,
we show how supervised learning coupled with convolutional
neural networks (CNNs) can be used to learn how to provide
mobile wireless infrastructure on demand, ensuring a multi-
robot team forms a connected network. CNNs have been
used in many robotics tasks such as perception, control,
and planning [19]–[23]. Similarly, images have emerged as
a natural way to encode the spatial configuration of agents
relative to each other and their environment [23]–[25]. A key
insight motivating the use of learning in our case is that
while training can be a long process, inference is inexpensive.
In addition, the existing connectivity maximization solutions
that aren’t suitable for real-time applications can readily be
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used to generate expert training samples offline for supervised
learning.

In this letter we present a novel approach to mobile
infrastructure on demand utilizing supervised learning with
CNNs. We show that our approach achieves comparable
performance to the expert it learns from in a fraction of the
time, generalizes to larger teams not seen during training,
and operates effectively in dynamic teams of robots. The rest
of this letter is organized as follows: Section II provides an
overview of the problem and our approach, covering how
we model communication between agents in II-A, how we
generate training samples in II-B, and what CNN architecture
we use in II-C, Section III contains results and analysis, and
finally in Section IV we provide concluding remarks.

II. METHODOLOGY

Consider the scenario where a team of mobile robots seeks
to accomplish a task requiring communication. Instead of
creating and sustaining a wireless network in addition to com-
pleting their objective, these robots, referred to as task agents,
assume the availability of communication infrastructure which
is provided by a different set of robots, referred to as communi-
cation or relay agents. This team of relay agents positions itself
in the environment and facilitates communication so that the
task agents can go about their objective without considering
the impact their actions have on their ability to exchange vital
information. Our focus is on how the communication agents
should be positioned.

More formally, given a set of N task agents with configu-
ration denoted xT ∈ RN×2, we seek to position a set of M
communication agents xC ∈ RM×2 so that the entire group
x = [xT ;xC ] maximizes the algebraic connectivity of the
underlying communication graph. While more sophisticated
placement algorithms exist [15]–[17], they neither provide
locally optimal solutions nor are they computationally suitable
even for offline data generation. We target algebraic con-
nectivity maximization since locally optimal configurations
can be readily found using an optimization approach [5].
Unfortunately, such optimization methods come at a high
computational cost as the size of the team grows and are
unsuitable for online applications (see Fig. 9). On the other
hand, inference on a trained neural network is inexpensive.
Thus, as a solution to this scaling problem, we propose
a supervised learning approach wherein a CNN learns to
position mobile communication nodes according to solutions
obtained from an optimization scheme similar to [5].

A. Communication Model

In order to reason about communication in a group of robots
we must be able to predict the ability of pairs of agents
to exchange information. In this work we use a function of
the distance between two agents borrowed from probabilistic
channel approaches that balances accuracy with model com-
plexity by capturing the dominant fading characteristics of
wireless channels [26]. Concretely, agents i and j located at
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Fig. 1: The non-vanishing wireless channel model in Eq. (1)
and the piecewise smooth model of Eq. (3) with n = 2.52,
PN0

= −70 dBm, and K = 5.01× 10−6 (-53 dB).

xi, xj ∈ R2, respectively, can communicate according to the
following wireless channel normalized rate function:

R̄(d) = erf

(√
PR

PN0

d−n

)
(1)

where PR is the received signal power computed from:

PR = PTKd−n. (2)

In the above equations, PT is the transmit power (mW),
d = ||xi−xj ||, K is a constant specific to the communication
hardware used, PN0 is the ambient noise at the receiver (mW),
and n is the signal decay exponent [26]. Note that while Eqs.
(1), (2) assume absolute power (mW), it is often convenient to
refer to various quantities in relative units of decibel-milliwatts
(dBm). It is also useful to express Eq. (1) in terms of the
robot positions as R̄(xi, xj) = R̄(||xi − xj ||). Note that
Eq. (1) approaches but does not reach zero for increasing d,
implying that two agents can communicate at arbitrarily large
distances, albeit at very low rates (see Fig. 1). This behavior
does not align with reality as a wireless channel will certainly
cease to function at large distances as the signal becomes
indistinguishable from noise. Thus, we wrap Eq. (1) in a
piecewise smooth function that eventually drives the channel
rate to zero:

R(d) =


R̄(d) d ≤ dt
∂R̄
∂d

∣∣∣
dt

(d− dt) +R(dt) dt < d ≤ dc

0 dc < d

(3)

where the transition distance dt is found from a chosen, fixed
cutoff rate and dc is the cutoff distance at the zero rate crossing
of the linear function. A plot of Eq. (3) can be seen in Fig. 1.
In this work we use a default set of parameters for Eq. (3) (see
Fig. 1) with a fixed cutoff rate but allow the transmit power
to be varied from its default value of 0 dBm when necessary,
which effectively extends the max range of the channel, dc.

B. Dataset Generation

Our CNN learns to position communication agents from an
expert. In this case, the expert is an optimization approach to
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maximizing the connectivity of a communication graph based
on [5]:

maximize
xk+1

C

γ

subject to PTLP � Iγ (4a)
L = diag(A1)−A

[A]ij = R(xk
i , x

k
j ) +∇xk+1

i
RT (xk+1

i − xk
i )

+∇xk+1
j

RT (xk+1
j − xk

j ) (4b)

|xk+1
C − xk

C |1 ≤ ∆ (4c)

where L and A are the state dependent graph Laplacian
and adjacency matrix, respectively, and P is an orthogonal
basis spanning 1⊥. The tunable parameter ∆ along with the
constraint in Eq. (4c) ensures that the optimization variables
xk+1
C remain in a region around the current configuration

xk
C where the linearized channel model in Eq. (4b) is valid.

Eq. (4a) forces the algebraic connectivity to be greater than
or equal to γ. Note that the optimization variables are the
communication agent positions xC as they are the only agents
that can be controlled. Problem (4) adjusts xC in order to
maximize the algebraic connectivity of the team, γ, and can
be solved in an iterative fashion using an available SDP
solver, converging to a local optimum given an initial feasible
configuration. For more detail see [5].

We use the optimization expert in Eq. (4) to generate
training samples consisting of pairs of images that capture the
given task team and target communication team configurations.
In order to ensure that spatial relationships between agents
are consistent throughout the dataset, the metric distance each
image pixel represents is fixed at 1.25 meters per pixel. Task
team configurations xT are sampled from a uniform distri-
bution (Fig. 2a) and marked in the image using a Gaussian
kernel to avoid issues with sparsity (Fig. 2b). Next, a feasible
initial network team configuration must be found to seed the
optimization. To do this, a minimum spanning tree (MST) of
the task team configuration is computed and communication
agents are used to break up graph edges longer than dc (Fig.
2c). The corresponding communication graph can be readily
found from the augmented MST by applying Eq. (3) to each
pair of agents and keeping edges where the communication
rate is greater than zero. The resulting graph is guaranteed to
be connected since no edge in the augmented MST is greater
than dc.

With this feasible initial solution, Problem (4) can be itera-
tively solved to adjust the network node locations into a locally
optimal configuration (Fig. 2d). The resulting communication
team configuration is marked in a separate image using the
same Gaussian kernel (Fig. 2e). Figs. 2b and 2e constitute the
input and target output images of the CNN, respectively. This
entire data generation sequence is illustrated for one sample
in Fig. 2. The richness of the training dataset is critical to
the learned model’s performance. In problems where training
samples are scarce it is common to perform extensive data
augmentation to increase the size of the dataset and ensure
the samples capture sufficient angular diversity to account
for the rotational sensitivity of CNNs. In our case, training

samples are not only abundant but also randomly generated
in a way that the dataset naturally encodes sufficient angular
diversity for the CNN to learn the rotational symmetries of
our problem. In light of this, we do not perform any explicit
data augmentation.

C. Learning Architecture

When it comes to learning connectivity maximizing con-
figurations, choosing an appropriate model architecture is of
paramount importance. Our choice of a CNN architecture
might seem surprising. Why not use a learning model that
accepts the position of task agents and produces communi-
cation agent positions? In fact, a CNN with an image as an
input is a more appropriate representation because it leverages
the symmetries of the connectivity problem. We can think of
the communication team as filling in the gaps between the
members of the task team, a goal that depends on the relative
positions of agents and is invariant to their absolute positions.
CNNs possess this very property making them a suitable
choice for this problem. Furthermore, images are a natural way
to represent spatial information without incurring penalties
with scaling up to large numbers of agents. Provided the image
is sized to cover an adequate metric area, configurations with
many agents can be readily represented alongside those with
few. Once in image form, all inputs to the CNN are processed
equally meaning there is no performance difference between
a team consisting of 4 agents or 20. This is not the case with
the optimization in Eq. 4, which becomes prohibitively slow
for large teams (see Fig. 9).

Considering the input and output of our network is an
image, we employ an autoencoder (AE) like architecture
comprised entirely of convolutional layers which we refer to
as ConvAE. While typical AEs use fully connected layers or a
probability distribution at the information bottleneck between
the encoder and decoder, we found that using convolutional
layers instead resulted in better generalization performance,
especially as the size of the task team increased. As a side
effect, ConvAE can operate on arbitrarily sized input images
provided they pass cleanly through the network (for our model
compatible image resolutions are given by (N + 4) · 26 for
N ∈ Z ≥ 0). In other words, we never run out of image space
to represent teams with many agents spread over large areas.
Interestingly, for the smallest image resolution that the CNN
can process, the convolutions at the bottleneck are effectively
fully connected neurons. The encoder transforms the 256x256
input image into a volume with dimension 4x4xF, where F is
the number of filters. Immediately after, the first convolutional
transpose layer of the decoder takes this 4x4xF volume and
processes it with a 4x4 kernel. Notice how the entire trans-
formed input volume fits cleanly into the 4x4 convolutional
transpose filter so that every extracted feature factors into each
filters output, exactly like a fully connected layer. The utility of
autoencoders lies in the information bottleneck, which forces
the network to learn a lower dimensional representation of the
input data in order to faithfully replicate the output. In our
case, the information bottleneck at the deepest convolutional
layer causes the network to glean salient geometric features
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Fig. 2: (a) A randomly generated task team configuration; (b) The corresponding task team image; (c) The augmented MST
team configuration derived from (a); (d) The locally optimal team configuration found by solving (4); (e) The network team
image corresponding to (d). Each image has been cropped from 256x256 to 128x128 pixels which represents a square area
with a side length of 160 meters.

from the input configuration image that inform the placement
of network agents in the output image. The details of our
architecture are shown in Table I.

TABLE I: CNN architecture: network proceeds sequentially
from top (input) to bottom (output). Each Conv2D / Con-
vTranspose2D layer is padded, uses a stride of 2, and contains
128 input and output channels.

model layer type count kernel activation
encoder Conv2D 2 8x8 LeakyReLU
encoder Conv2D 4 4x4 LeakyReLU
decoder ConvTranspose2D 4 4x4 ReLU
decoder ConvTranspose2D 2 8x8 ReLU

III. RESULTS

Our ConvAE model was trained for 14 epochs on a dataset
comprised of 595k images generated using the process de-
scribed in Section II-B, with task teams comprised of 2-6
agents. Adam was used as the optimizer with a learning rate
of 10−4, a batch size of 4, and mean-squared-error as the loss
function 1. The output of the CNN for one test sample can
be seen in Fig. 3. It is immediately apparent that the CNN
output in Fig. 3c differs from that of the optimization in Fig.
3b; what may not be so obvious is that the CNN yields a
valid configuration that connects the task agents shown in
Fig. 3a. This outcome is not unexpected. The optimization
produces locally optimal solutions and for a given task team
configuration there may be many distinct local optimums.
Clearly the performance of the CNN must be judged by its
ability to produce connected configurations and not the relative
closeness of the output image to the reference image in a
mean-squared-error sense.

In order to compute algebraic connectivity we must be able
to extract relay node positions in R2 from the output images
of the CNN. While the peaks in Fig. 3c are distinct and
easy to pick out, the CNN images are not always so clear
(see Fig. 5c). To overcome this issue we take a coverage
perspective, interpreting the output image as a distribution
the communication agents must assume. First, we determine

1code and multimedia available at: www.danmox.com/projects/convae.html

(a) (b) (c)

Fig. 3: results for one test sample showing (a) the input image
to the CNN; (b) the expected output; and (c) the CNN output.
Each image has been cropped from 256x256 to 128x128 for
clarity.

the number of agents to deploy by utilizing an adaptive
thresholding scheme to pick out peaks in the intensity im-
age. Then, we employ Lloyd’s algorithm for the specified
number of agents to find a configuration that achieves locally
optimal coverage of the intensity distribution [27]. The CNN
may output redundant agents, especially when the task team
configuration is symmetric (see Figs. 5d, 5f). We prune these
extra agents by extracting a minimal connected sub-graph.
Finally, the algebraic connectivity can readily be found using
the known positions of the task agents used to generate the
input image.

Algebraic connectivity alone does not tell the whole story.
Since our channel model in Eq. (3) is truncated, there is a
hard cutoff at dc beyond which it is assumed no commu-
nication is possible. Any configuration relying on an edge
greater than dc has an algebraic connectivity of zero (i.e. is
disconnected). However, for performance evaluation we want
to know how close a configuration is to being connected (i.e.
distinguish between one configuration relying on an edge one
centimeter beyond dc and another tied together with an edge
many meters greater than dc). Thus, as a more informative
criterion, we consider the transmit power PT required to
achieve a connected configuration. For the optimization this
value is guaranteed to be 0 dBm. For the CNN we extract
the configuration as described above and check connectivity
with 0 dBm, increasing it if necessary until connectivity is
established. In this way, the performance of our system is

www.danmox.com/projects/convae.html
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opt. (0.11, 0) | CNN (0.11, 0)

task opt(1) CNN(1)

(a)

opt. (0.067, 0) | CNN (0.067, 0)

task opt(2) CNN(2)

(b)

opt. (0.053, 0) | CNN (0.052, 0)

task opt(3) CNN(3)

(c)

opt. (0.029, 0) | CNN (0.028, 0)

task opt(3) CNN(3)

(d)

Fig. 4: Line scenario results progressing from (a) to (d).
Dimensions are in meters. Relay agents are shown as x’s for
the CNN and o’s for the optimization (refered to as opt.), with
the number deployed by each method shown in the legend,
and the background image combines the input and output of
the CNN. The title format is: method (algebraic connectivity,
transmit power in dBm). The images have been cropped from
256x256 to 128x128 for clarity, covering a 160x160m area.

quantified by the amount of power required to connect the
network as compared to the optimization.

The following Sections III-A and III-B provide qualitative
results of our system on canonical line and ring topologies.
Afterwards, we present ConvAE’s performance over an exten-
sive test dataset in Section III-C, show its ability to generalize
to larger teams not seen during training in Section III-D,
detail how our approach scales in Section III-E, and finally
demonstrate how our system can be deployed in real, dynamic
teams of robots in Section III-F.

A. Line Test

Perhaps the simplest test of the CNN’s ability to produce
connected configurations is a line test. Two agents starting
relatively close together progressively move away from one
another, necessitating the formation of a chain of communi-
cation relay nodes in between. Snapshots of the CNN and
optimization results can seen in Fig. 4.

Across the snapshots, the configurations and corresponding
connectivity values produced by the CNN and the optimization
are very similar. This is not surprising as the CNN was trained
on 170k images of 2 agent task teams of varying density and
orientation, providing ample opportunity for the model to learn
line topologies. In all cases, the CNN was able to produce
connected configurations with the same number of agents as
the optimization without needing to vary transmit power from
its default value of 0 dBm.

opt. (0.41, 0) | CNN (0.13, 0)

task opt(3) CNN(1)

(a)

opt. (0.173, 0) | CNN (0.076, 0)

task opt(3) CNN(2)

(b)

opt. (0.026, 0) | CNN (0.085, 0)

task opt(3) CNN(3)

(c)

opt. (0.017, 0) | CNN (0.016, 0)

task opt(3) CNN(3)

(d)

opt. (0.073, 0) | CNN (0.051, 0)

task opt(6) CNN(5)

(e)

opt. (0.009, 0) | CNN (0.008, 0)

opt(6)
CNN(6)

(f)

Fig. 5: Circle scenario results progressing from (a) to (f).
Dimensions are in meters. Relay agents are shown as x’s for
the CNN and o’s for the optimization (refered to as opt.), with
the number deployed by each method shown in the legend,
and the background image combines the input and output of
the CNN. The title format is: method (algebraic connectivity,
transmit power in dBm). The images have been cropped from
256x256 to 128x128 for clarity, covering a 160x160m area.

B. Circle Test

A harder test involves a group of task agents distributed
on the perimeter of an expanding circle. The job of the
optimization and CNN is to effectively deploy communication
agents so that the task agents remain connected. Results for
this circle test can be seen in Fig. 5.

Our CNN-based approach also performs well in the circle
test when compared with the optimization. There are a few
interesting results to note. First, because there is no explicit
labeling in the images, the CNN only learns to paint one blob
in cases where agent positions overlap. This can be seen in
Fig. 5a, 5e where the optimization placed multiple overlapping
agents while the CNN used fewer to connect the network.

Another significant takeaway from the circle test is that our
CNN can outperform the optimization that it learned from,
as seen in Fig. 5c. Since algebraic connectivity decreases
when links between agents are severed, the optimization will



6 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

0 2 4 6 8

10−3

10−2

10−1

100

default power

transmit power, PT (dBm)

fr
ac

tio
n

of
te

st
ca

se
s

(a)

−2 −1 0 1 2 3

10−4

10−3

10−2

10−1

100

# CNN − # opt.

fr
ac

tio
n

of
te

st
ca

se
s

(b)

Fig. 6: Histograms of a) transmit power used by the CNN to
achieve connectivity and b) the difference between the number
of agents deployed by the CNN and optimization.

only ever maintain or increase the edges in the network and
is thus confined to a local optimum that depends on the
topology of the initial configuration. However, there are likely
many different locally optimal configurations represented in
the training data as randomly sampled task agent teams that
are similar in shape may have different solutions from the
optimization (see Figs. 5c and 5d where it yielded considerably
different local optimums despite slight changes in the input
configuration). Additionally, subsets of a given task agent
configuration are likely to appear similar to other training
samples. As a result, the CNN may output a configuration
with a different topology than the optimization (see also Fig.
5c).

C. Dataset Statistics

The line and circle tests provide a sense of how the CNN
functions in two canonical scenarios. In this section we provide
a more rigorous evaluation by computing the performance of
ConvAE over a test dataset of 105k images generated in the
same way as the training dataset with task teams of 2-6 agents.
The results can be seen in Fig. 6.

As mention in the beginning of Section III, the CNN
increases transmit power only when the configuration is not
connected at the default value of 0 dBm. As can be seen in
Fig. 6a, the CNN produces connected configurations at 0 dBm
(indicated by the leftmost bar) a vast majority of the time and

in most other cases requires very little additional power. On
average our CNN required 0.05 dBm of transmit power with a
variance of +0.438 dBm to produce connected configurations.

Fig. 6b shows a histogram comparing the number of agents
deployed by the CNN and optimization. In cases where the
CNN required more transmit power it was often due to
deploying fewer agents. Thus to make this comparison fair,
we restrict ourselves to test samples where the CNN used
the default transmit power (100k out of the 105k cases) and
show the number of agents deployed by the optimization
subtracted from the number used by the CNN. Negative
values indicate instances where the CNN used fewer agents to
connect the network and positive values those where the CNN
deployed more. In most cases the number of agents deployed
by each method is within ±1 of each other showing that our
approach achieves connectivity with roughly the same number
of communication nodes as the optimization: 0.031 ± 0.344
more agents on average. In some cases, the CNN deploys
more agents than required, typically for configurations near
a topology change due to ambiguities in the training data. As
a result, there is a slight asymmetry in the distribution in Fig.
6b; however, we note that the y-axis is a log scale and these
instances represent a very small fraction of the 105k test cases.

D. Generalization

Our CNN-based approach performs well on test samples
similar to ones seen during training. However, in practice it can
be cumbersome to generate new data and retrain the network
for every team size the CNN might encounter. Furthermore,
even generating meaningful training data offline with the
optimization becomes increasingly difficult as the number of
agents increases. Given the symmetries of the problem, we
expect our CNN to have learned something about connecting
teams of 2-6 agents that would apply to larger teams.

Indeed, we find this to be the case. We applied our ConvAE
network trained exclusively on 2-6 task agent teams to a test
dataset with much larger teams of 8 and 12 task agents with
3,000 and 1,500 samples, respectively. Fig. 7 shows that our
model generalizes well to these out-of-distribution test cases.
Representative results are show in Fig. 8. We note that this is
not a trivial result. To achieve good performance with our
method on large teams one need only train ConvAE on a
comprehensive dataset of smaller configurations and fine tune
on a much smaller set of larger team samples.

E. Scalability

A main motivation for our work is scalability. While Eq.
(4) offers an elegant solution to the connectivity problem it
becomes prohibitively slow as the size of the team grows and
thus is unsuited for real-time deployment. On the other hand,
our approach built on CNN inference is exceptionally scalable.
Fig. 9 shows a comparison of computation time between the
optimization and CNN. For the CNN we measure the time it
takes to convert a task team configuration to a kernelized im-
age (like Fig. 2b), perform inference, and extract the resulting
communication team configuration. For the optimization we
measure the time it takes to either converge to a local optimum
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Fig. 7: Histograms of a) transmit power used by the CNN to
achieve connectivity and b) the difference between the number
of agents deployed by the CNN and optimization.

opt. (0.002, 0) | CNN (0.002, 0)

opt(16)
CNN(16)

(a)

opt. (0.005, 0) | CNN (0.008, 0)

task opt(3) CNN(3)

(b)

Fig. 8: Generalization examples for 8 and 12 agent teams.
See Figs. 4, 5 for complete description. Images are 256x256
covering an area 320 meters on a side.

or reach 20 iterations. Note that it often takes more than 20
iterations for the optimization to converge; however, to account
for often brittle convergence criteria we impose an aggressive
upper limit on the maximum number of optimization iterations
for the purpose of comparison. The advantage of our learning
approach is clear: while the optimization quickly climbs to
10s of seconds the CNN increases from 520ms to only 800ms,
with the increase in time coming entirely from unoptimized
post processing steps. For a team of 20 agents the CNN is
nearly 40 times faster!

F. Dynamic Scenario

While we have shown the performance of our system across
a variety of static test cases, our goal remains to provide
mobile wireless infrastructure on demand to teams of task
agents collaborating to accomplish an objective. To that end,
we have also deployed our system in a dynamic scenario in a
Unity-based robotics simulator. To adapt our system for online
use, we wrap our CNN in a high level controller that takes
in the current state of the task agents, marks their positions
in an image with a gaussian kernel, and passes it to the CNN
for inference. From the image produced by the CNN, the high
level controller extracts the target network team configuration
using the procedure outlined in Section III and sends waypoint
commands to the communication agents accordingly.

Our approach is inherently centralized and relies on aggre-
gating state information about each agent in the team at a
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Fig. 9: A comparison of the computation time required to find
relay node positions using our CNN approach compared with
the optimization-based approach in Eq. (4) (opt).

planning node and disseminating control commands back to
the communication agents. This network overhead amounts to
transmitting a few floats at each planning step, which need not
be run at a high rate. Thus, our method could operate using
the network that it provides as a backbone or utilizing a low-
bandwidth, long-range control channel. Note also that once
deployed our CNN-based planner requires little computation
and could easily be run on-board one of the communication
agents, alleviating the need for a fixed ground station.

In the dynamic scenario, five task agents patrol a large
urban area covering an space approximately 500 meters on a
side. These patrolling agents require communication in order
to secure their perimeter and thus relay agents are deployed
to form a connected network. For this test, the transmit power
of the agents was increased to 21 dBm (dc ≈ 200 meters) in
order to scale their communication range relative to the size of
the space. While the CNN was trained on configurations with
an underlying transmit power of 0 dBm, it can be used directly
in this scenario without retraining simply by appropriately
scaling the input and output configurations of the CNN. A
snapshot of the paths taken by the task and communication
agents in this scenario can be seen in Fig. 10. During the
patrol our CNN-based controller produced solutions to the
connectivity problem at a rate of 2 Hz, keeping the patrolling
task agents connected the entire time. Contrast that with the
optimization approach that takes on the order of ~7 seconds
to come up with a single connected configuration (see Fig. 9).

One might wonder about the continuity of the target com-
munication team configurations produced by the CNN between
iterations. While each image is processed independently, the
rate at which the control loop is closed means that the
CNN processes relatively small changes in the input image
at each time step. Since CNNs are robust to perturbations
the target communication team configurations do not change
dramatically between iterations, as can be seen in Fig. 10. We
do note that over time significant changes in the task agent
configuration can result in the network topology changing.
However, this challenge is faced by every connectivity based
method and can be mitigated in practice by planning ahead.
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Fig. 10: A screenshot of the Unity-based robotics simulator showing the location of robots as blue blobs (left) and two
snapshots of the dynamic patrol showing the positions of the task agents as red dots and the communication agents following
our CNN-based planner as blue x’s at the start (center) and middle (right) of the patrol. Dimensions are in meters.

IV. CONCLUSION

In this letter we have proposed a data-driven approach
to maximizing algebraic connectivity by employing a con-
volutional autoencoder that learns how to provide mobile
wireless infrastructure on demand in robot reams requiring
communication. While optimization-based methods become
slow as the number of agents increases, our CNN-based
method scales exceptionally well, running over an order of
magnitude faster for large teams. Our system achieves all
this while consuming nearly the same amount of transmit
power and using an almost equal number of communication
agents on average. A natural question is if there is a better
network architecture for this specific application that can yield
better performance, especially in dynamic scenarios. This is an
avenue for future research.
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