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Abstract— In this paper we present a new approach to Mobile
Infrastructure on Demand (MID) where a dedicated team of
robots creates and sustains a wireless network that satisfies
the communication requirements of a different team of task-
oriented robots seeking to coordinate their actions in the ab-
sence of existing communication infrastructure. Different from
previous works, our approach forgoes heuristics for network
performance such as algebraic-connectivity or network flow
optimizations and instead positions communication support
robots to directly maximize the probability of packet delivery
by the underlying opportunistic routing protocol. Our system
is task agnostic and practical to implement and operate on
robots equipped with off-the-shelf WiFi radios. We demonstrate
this through a set of experiments showing our MID system
maintaining the delivery of critical mission data in a situational
awareness setting and enabling foraging robots to effectively
coordinate their actions during multi-robot exploration.

I. INTRODUCTION

The promise of multi-robot systems is that they can
complete tasks faster and more efficiently than any single
robot. However, these benefits are only realized if the robot
team can communicate in order to effectively coordinate
their actions. Many robot teams operate in tightly controlled
environments with access to existing network infrastructure
in order to communicate. With continued improvement in
on-board autonomy, robots are increasingly being deployed
in challenging environments beyond the reaches of existing
communication networks [1]. In these scenarios, robots can
utilize their on-board wireless radios to form peer-to-peer
or ad-hoc networks in order to exchange vital coordination
information. However, actions taken to complete task objec-
tives often take robots out of direct communication range
with one another (e.g. in multi-robot exploration, foraging
robots disperse to map out a space and avoid revisiting areas
already covered by another member of the team) introducing
a tension between task fulfillment and maintaining contact
with the rest of the team.

Research in the area of communication in robot teams
has saught to reconcile this tension between competing task
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and communication objectives. Early work considered the
graph induced by the known positions of each robot in the
team coupled with a channel model predicting the condi-
tion of communication links between them [2]–[6]. These
approaches saught to maintain or improve the algebraic-
connectivity of this communication graph in both a cen-
tralized and decentralized manner. Algebraic-connectivity is
inherently a heuristic for network performance and later work
saught to bridge the gap by introducing more sophisticated
network performance objectives such as end-to-end bit-error-
rate [7] or a packet flow optimization [8]. Other work
eschewed communication models entirely, instead estimating
the spatial variation of communication signals and moving
robots to maximize expected received signal strength [9].
More recent work introduced the most sophisticated system
yet with global and local planners for controlling a team of
robots to complete a task objective while satisfying a robust
packet routing optimization [10], [11].

One critical choice in robotic communication sys-
tems is the network performance metric. While algebraic-
connectivity affords a convenient mathematical framework
for judging the quality of the network it is inherently a
heuristic for performance. In practice one would have to
operate an ad-hoc routing protocol to handle network traffic
and it is unclear if maximizing algebraic-connectivity also
maximizes the performance this protocol. More sophisticated
models don’t necessarily solve this problem. While packet
flow algorithms like the ones in [8], [10], [11] are useful for
high level network load balancing they are difficult to operate
in practice as we found in our previous work [12]. Robot
teams often require numerous flows of information causing
the dimension of the optimization to increase significantly;
furthermore, not all exchanges of information in robot teams
can be accurately modeled as constant bandwidth flows (e.g.
intermittent exchanges of map data in an exploration setting).

We also desire solutions for communication in robot teams
that are suitable for deployment in highly dynamic scenarios
to support complex tasks. Ensuring routing optimization
programs are satisfied is a computational expensive task and
not amenable to on-line deployment. In addition, other works
require specific restrictions such as stationary task agents [9]
or a single source and destination node [7].

In this paper we seek to address these challenges by
introducing a new approach to the problem of Mobile Infras-
tructure on Demand (MID) formalized in [12] and similar
to [9], [13]. In MID a set of communication robots that we
control act as mobile routers and support the network re-
quirements of a different set of client robots collaborating to
accomplish some objective which we observe. This approach



decouples task planning from network maintenance so that
the task oriented agents can go about their objective without
considering the impact their actions have on their ability to
communicate. Additionally, the communication or MID team
simply requires knowledge of the position of the task agents
and their communication requirements so that solutions to the
MID problem are task agnostic. Critically, in the place of a
heuristic for network performance, we introduce a planner
that directly optimizes the performance of the underlying
routing protocol handling network traffic. Following our
planner, MID agents move to maximize the probability
that packets get delivered to their intended destination. We
also show the practicality of our method through a set of
experiments where our MID system supports task agents
performing situational awareness and multi-robot exploration
1.

II. METHODOLOGY

In this work we seek a solution to the problem of Mobile
Infrastructure on Demand. Given the positions of a set of
task-oriented robots, we seek target positions for a different
set of robots (i.e. the MID or network or communication
team) that move to ensure flows of information in the task
team are preserved over the duration of the mission. As
we elaborate on in this section, our controller seeks to
satisfy these communication requirements by maximizing
the probability that packets in each flow are successfully
delivered by the underlying routing protocol handling traffic
in the network. In Section II-A we detail this important
choice of routing protocol, then in Section II-B we introduce
a gradient-based local planner, and finally in Section II-C we
discuss how these pieces are integrated into a complete MID
system.

A. Opportunistic Routing

Mobile ad-hoc routing is a well studied problem within
the wireless systems community and there exists an extensive
body of literature dedicated to developing capable solutions
[14]. Routing protocols can be categorized in many different
ways. One particular axis of comparison involves when the
choice of next hop relay is made. Traditional protocols are
proactive in nature, seeking to use cached network state
information in order to plan the best possible packet path
before transmission. Consider the scenario shown in Fig. 1
where node A seeks to transmit to node D. A traditional
routing protocol might select node C as the next-hop relay.
However, one feature of wireless networks is that they
operate via a shared medium. In other words, only one node
can transmit at a time and while this transmission occurs
any node within range can decode the packet regardless
of if they are the intended recipient 2. While node C may
be chosen as the next hop, node B may also receive the
packet. In a proactive routing setting, if C does not receive

1code and multimedia available at: www.danmox.com/projects/
oc.html

2considering standard 802.11 WiFi operating in ad-hoc/IBSS mode and
ignoring spatial reuse and modern amendments like OFDMA

the transmission node A must retry the transmission at a
later time even though B received the packet and is closer
to the desired destination D than node A. A new class of
opportunistic routing protocols seek to capitalize on these
fortuitous receptions by deferring the choice of next hop
relay till after transmission. The set of nodes that could act
as next hop relays are embedded in the packet header and
then, after transmission, the candidate relays utilize a time
slot mechanism to coordinate which one relays. Returning
to the example in Fig. 1, an opportunistic protocol might
list both B and C as relays in order of increasing priority;
if C receives the packet it will immediately relay it to D.
While this is happening B is monitoring the airwaves; if B
does not overhear a transmission from C after a specified
period of time then it assumes C did not relay the packet
and thus did not receive it to begin with. In this case,
B takes charge and relays the packet. While opportunistic
protocols require this additional coordination step they have
been shown to outperform their proactive counterparts in
networks with lossy links, such as those often encountered
in robotics [15], [16]. In addition, by allowing more than one
node to act as the next hop relay opportunistic protocols are
more robust to errors in cached network state information
and increase the probability that the packet makes progress
towards the destination for each transmission. Note that the
choice of allowable next hop relays is typically a proper
subset of the network, distinguishing opportunistic protocols
from flooding protocols. This is illustrated in the example
shown in Fig. 1 where nodes B and C were selected to relay
but not node E. The set of allowable relays at each node for
each flow is carefully selected using collected network state
information so that this distributed coordination mechanism
is likely to succeed. In this paper we closely follow the
protocol SOAR and further details about its operation such
as the relay selection algorithm can be found in [16]. In the
remainder of this work, we assume that the network state
information and routing table constructed by the protocol
are available.

B. Local Planner

With knowledge of the relays the protocol is using, we can
enumerate the possible paths a packet might take through
the network from source to destination. An example of the
routing table for the scenario in Fig. 1 is shown below in
Table I.

TABLE I: an example routing table for the network shown
in Fig. 1 for flows between nodes A and D.

flow A relays B relays C relays D relays
A → D C, B D, C D -
D → A - A A, B B, C

Traversing the routing table, we can formulate the set of
possible paths a packet might follow for the flow A → D as
R = {ABD,ACD,ABCD}. A route r = {ABD} ∈ R is
composed of a set of links l1 = AB and l2 = BD and each
link has an associated probability of packet delivery Pl. The

www.danmox.com/projects/oc.html
www.danmox.com/projects/oc.html


A

B

C

D

E

0.8

0.5

0.7

0.5

0.6

0.8

0.7

Fig. 1: An example ad-hoc network where node A seeks to
transmit a packet to node D. The arrows show the probability
of delivery for each link and the possible paths a packet
might take through the network if B and C are selected as
intermediate relays. A critical decision by the protocol is
which nodes can participate in routing; here B and C were
selected but E was not.

probability that a packet gets delivered along at least one of
the paths in the flow follows from the probability that they
all fail:

Pd = 1− (1− PABPBD)(1− PACPCD)(1− PABPBCPCD)

= 1−
∏
r∈R

(
1−

∏
l∈r

Pl

)
. (1)

Supposing we have a channel model that provides the packet
delivery probability of a link as a function of the distance
between the two nodes, we can compute the gradient of Eq.
(1) with respect to the position of a MID agent xi as:

∂Pd

∂xi
=
∑
r∈R

∂Pr

∂xi

∏
s∈R\r

(1− Ps). (2)

In multi-robot tasks there are often many flows of informa-
tion between different robots in the task team. The user can
specify a set of source/destination pairs of importance or the
system can operate under the assumption that all possible
flows between task agents should be maintained. In either
case, the route enumeration process described previously is
repeated for each source/destination pair and the gradients
of each flow are summed:

∂P

∂xi
=

F∑
k=0

∑
r∈Rk

∂Pr

∂xi

∏
s∈Rk\r

(1− Ps) (3)

where there are F total flows and Rk is the set of possible
paths for flow k ∈ {1, 2, · · · , F}. Finally, we employ Eq.
(3) in a gradient ascent scheme to find the locally optimal
goal position that MID node i should move to in order to
increase the probability packets get delivered.

In previous works, a great deal of effort was devoted to
selecting sufficiently rich functions to capture the inherent
uncertainty in wireless communication [7], [10]–[12]. In this
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Fig. 2: Packet delivery probability as a function of distance.
Roughly 3000 packets transmission attempts were made
between two nodes at varying distance in the experimental
space of Section III. Transmission attempts were divided into
40 bins based on distance with the blue dots showing the
delivery probability of each bin.

work, we take a different approach and use a linear function
to model the probability of delivery between two nodes:

P (d) = 1− d / dc (4)

where dc is the cutoff distance after which delivering packets
along the link drops to zero. While this approach might
seem overly simplistic, we note a few things. First, delivery
probability statistics collected in the space we conducted
experiments exhibit a roughly linear trend with distance
as can be seen in Fig. 2. Second, since the opportunistic
protocol on which our local planner is built capitalizes on
a diversity of links for forwarding, it makes the choice of
channel model used for planning less critical. For these
reasons, the linear model in Eq. (4) is sufficient for our
MID system. Nevertheless, there is nothing preventing the
use of more complicated channel models with our approach
provided they are differentiable with respect to node position.

Gradient ascent on Eq. (3) with Eq. (4) as the channel
model produces locally optimal configurations. While finding
globally optimal solutions is generally infeasible, we can
perform exhaustive search on the simple line scenario shown
in Fig. 3a with two task agents and two MID agents to
gain insight into the kinds of configurations our planner
might converge to. When nodes A and D are fixed relatively
close together, the MID configuration that maximizes the
probability of packet delivery is both MID relays lumped
together at the midpoint (Fig. 3b). This configuration also
maximizes the number of possible routes from source to
destination and minimizes the number of hops in each path.
Of course, as dt grows beyond the range of a single agent,
the optimal configuration is a daisy chain evenly dividing
the space between A and D (Fig. 3c). Interestingly, Fig. 3a
illustrates that our planner prefers path diversity over link
quality. In other words, configurations with many packet
paths with few hops albeit via poorer links have higher
delivery probabilities than configurations with fewer possible
packet paths with more hops via higher quality links.
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Fig. 3: (a) A scenario with two task agents (red) supported
by two MID agents (blue) and the corresponding delivery
probability reward surfaces for different values of the dis-
tance between the task agents dt in (b), (c). In each case,
the linear channel model of Eq. (4) with dc = 30 is used.

C. System Implementation

Each robot is equipped with an 802.11 WiFi radio config-
ured in ad-hoc/IBSS mode. Without an available implemen-
tation of SOAR, we developed our own in C/C++ utilizing
the broadcast channel and unix sockets. Each node estimates
the state of the network (i.e. link ETX [17]) by periodically
transmitting / listening for beacon packets, which we also
utilize to disseminate this link state information along with
the latest position of each robot. Link state information is fed
into the route selection algorithm used to update the routing
table applied by the protocol. Robot positions coupled with
Eq. (4) are used to generate link state and routing information
that acts as a smooth approximation to their beacon based
counterparts suitable for control. Our routing protocol is
taylored for ROS and acts as a multi-master similar to the
popular FKIE Multimaster [18]. Arbitrary ROS traffic that
must be sent to other nodes in the network is captured by
the protocol and serialized into IP packets transmitted by
the physical layer. Because we utilize the broadcast channel,
each node receives all nearby network traffic regardless of
destination which enables the opportunistic gains discussed
earlier. Packets arriving at a node are processed by the
protocol and relayed or re-published on the local ROS
instance as appropriate. Every node in the network runs an
instance of our protocol implementation while only MID
robots run the planner. In this way, all traffic exchanged
between robots regardless of team affiliation flows through
the protocol.

III. RESULTS

The goal of our proposed MID system is to support the
communication requirements of a set of task agents seeking
to coordinate their actions. Due to the stochastic nature
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Fig. 4: An illustration of the situational awareness experi-
ment. The red task agents of 42, 44, and 46 start at a central
depot and spread out to their indicated destinations. Robot
46 seeks to send 8 Kbps of traffic to both 42 and 44. Robots
40, 41, and 45 are MID agents.

of wireless networking, the true test of a communication
system is its ability to operate in the noisy, lossy, cluttered
environments in which robots are often called upon to
operate. To this end, we conducted a suite of experiments
utilizing the system described in the previous section with the
Scarab robots developed at the University of Pennsylvania
[19]. Scarabs are differential drive ground robot platforms
equipped with a powerful onboard computer capable of
running a complete ROS-based autonomy stack in addition
to other application related programs. Each is outfitted with
a 2D Hokuyo Lidar for navigation and obstacle avoidance,
an ASUS Xtion structured light sensor providing limited
field of view RGBD images of the environment, and off
the shelf WiFi radios. In the following sections we detail
experiments where our MID system supports a team of
task agents performing situational awareness and multi-robot
exploration.

A. Situational Awareness

In the situational awareness task, patrolling agents must
remain in contact with a fixed base station [10], [11],
[20]. This task poses a challenge as patrolling trajectories
stretch the network, requiring the supporting MID system
to adapt and reconfigure online. In our case, Scarabs 42,
44, and 46 acting as task agents begin at a central depot
and then disperse to predefined target locations; while this is
happening, 46 sends critical mission information in the form
of 100 Byte packets at a rate of 10 Hz to 42 and 44. An
illustration of this scenario is shown in Fig. 4. We conducted
the test twice: with and without MID support. A plot of the
packet delivery probability over the duration of each test is
shown in Fig. 5 and snapshots of the team configurations are
shown in Fig. 6.

A clear takeaway from Fig. 5 is the stark difference
between the case with MID support and without. This is
not particularly surprising. Without MID support, the task
agents were forced to route packets among themselves and
eventually along low probability links as the team dispersed.
While task agents 42 and 44 could act as relays for each other
adding some level of receiver redundancy the overall success
of broadcasts across the space was low. As is apparent in
Fig. 5 after t = 250s, the links between 46 and the other
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Fig. 5: Delivery probability for packet streams beginning at
Scarab 46 destined for Scarabs 42 and 44 for the cases with
and without MID support.

Fig. 6: Snapshots of the situational awareness test without
MID at t = 120s (top) and with MID at t = 80s (middle)
and t = 200s (bottom). The link probabilities estimated
through beaconing are shown as red lines with proportional
transparency.

task agents eventually broke and task traffic ceased entirely.
In contrast, with MID support the flows of packets in the

task team were maintained with a high degree of reliability
throughout the experiment. As the task agents grew further
and further apart, the MID agents dynamically positioned
themselves in order to maximize the probability of end-to-
end packet delivery. Even as the task agents reached the
extents of the space, little change can be noticed in the deliv-
ery probability in Fig. 5. Initially, the optimal configuration
tracked by the MID team was a cluster positioned at the
center of convex hull formed by the task agents (see Fig. 6
middle). The position of the MID team is less consequential
at these early stages of the experiment as the task agents are
able to effectively communicate with one another directly.
However, as the experiment progressed and the task agents
grow further apart, the cluster of MID agents split up with
agent 41 moving towards 46 and agents 40, 45 remaining
together closer to 42 and 44 (Fig. 6 bottom). While we cannot
make claims about the global optimality of this configuration
it is consistent with our intuition from Section II-B that
the planner seeks to maximize the probability of packet
delivery through path diversity. As the task agents reach
their ultimate destinations, traffic in the network is primarily
relayed through the MID agents as can be seen in Fig. 6
(bottom).

One might wonder why the delivery probability isn’t closer
to 100% for the MID case. In both experiment runs, packets
were transmitted by the protocol in a best effort manner with
acknowledgments / retries disabled so that the results in Fig.
5 are a function of the network configuration produced by
our MID planner and not of the capability of the protocol
itself. As such, some packets are dropped due to the lossy
links in the network. However, as we will see in Section
III-B reliable transport with retries / acknowledgments can
increase the reliability of packet delivery close to 100%.

B. Multi-Robot Exploration

The second task we support with our MID system is multi-
robot exploration (MRE), where team of robots are tasked
with autonomously building a map of the environment. Mul-
tiple robots can explore a space faster than any single robot
can provided they coordinate their actions and choose to visit
different regions. A natural consequence of this behavior
is that communication links between exploring robots often
break as they grow further apart, conspiring against their
ability to efficiently complete the task. In this experiment,
we demonstrate the use of our MID system to ensure a team
of exploring robots can successfully coordinate their goals.

Autonomous exploration with robots is a well studied
problem. The fundamental challenge lies in analyzing partial
maps of the environment to determine where to travel next to
complete the map in a fast, efficient manner. The traditional
approach involves repeatedly seeking the border between
known and unknown space, known as the frontier, until
all free space has been visited [21]. While other more
sophisticated approaches exist (e.g. [22], [23]), the focus of
our experiment is on demonstrating our MID system. Thus,



we choose frontier exploration as it is simple, effective, and
lends itself well to multi-robot coordination. Indeed, many
MRE approaches build off of frontier exploration and involve
sharing frontier locations and computing goals for the team
that do not coincide [24]–[26]. Some approaches assume
robots can communicate throughout exploration by utilizing
existing network infrastructure [24] while others propose
coordination strategies that handle intermittent connectivity
but cannot guarantee robots won’t re-explore visited regions
[25], [26]. Enabling systems like these to operate without
existing communication networks and without sacrificing
performance is a main motivation of our work.

In our experiments, we employ a distributed, asynchronous
coordination approach based on sharing known frontiers and
current goals. In a nutshell, each exploring robot maintains
a synchronized set of frontiers goals that none of them have
visited. This is accomplished by sharing candidate frontier
goals with the team and notifying other agents when one
falls within an already visited space. In addition, each robot
periodically shares their current goal and remaining path cost
so that no two robots pursue the same one.

We conducted our multi-robot mapping experiment across
a 10,000 sq. ft. indoor office space with scarabs 42, 44,
46 dedicated to exploration and scarabs 40, 41, 45 running
our MID system. Snapshots of the experiment at key points
can be seen in Fig. 7. This time, packet flows between task
agents in this experiment were transmitted in reliable mode
with retries and acknowledgments enabled. While exploring,
agents 42, 44, and 46 exchanged a total of 3, 396 coordina-
tion messages among which 46 were dropped for a packet
delivery rate of 98.6%. Following our coordination scheme,
the exploring agents remained largely separate during the
experiment, initially beginning in a cluster towards the center
of the space but quickly spread out to visit different areas of
the map. Note that the opacity of the underlying occupancy
grid indicates the number of robots that have covered the
space with faint regions visited by a single robot and fully
opaque regions by the entire team. With our MID system
for support, the exploring robots could effectively coordinate
throughout the mission and after 450s seconds the entire
space was explored with little overlap as seen in highlighted
regions in the bottom of Fig. 7.

Supporting multi-robot exploration posed much more of a
challenge for our MID planner. Over the course of the task,
the exploration team’s configuration translated and morphed,
requiring MID agents to handle more interference from
obstacles as compared with the situational awareness task.
While no explicit global planning was performed, each robot
was equipped with a navigation stack capable of avoiding
static and dynamic obstacles. Utilizing this capability, the
MID agents pursued their goals, navigating around obstacles
if necessary and seeking to get as close as possible to the
target goal if it was unreachable. Because of this, MID agents
would occasionally fall out of formation for a short period
of time (e.g. agent 40 in Fig. 7 at t = 290s) but were able to
swiftly recover their target position in the network. It should
be noted that while the experiment space is a cluttered,

Fig. 7: Snapshots of the multi-robot exploration experiment
with MID support at t = 150s (top), t = 290s (middle),
and at the end at t = 450s (bottom). Link probabilities are
shown as red lines with proportional transparency. Frontier
cells are green lines, visited goals red squares, unvisited goals
blue squares, and current goals yellow squares.

obstacle filled environment, it is largely a simply connected
domain in which our local controller with obstacle avoidance
functions fairly well. In order to operate in a more complex
environment (e.g. with long connecting corridors or larger
obstacles) our MID system would require global planning
in order to reconfigure the team when the gradient controller
becomes trapped in a local minimum. This remains an avenue
for future work.

IV. CONCLUSION

In this work we have presented a new solution to Mobile
Infrastructure on Demand, enabling teams of task oriented
robots to successfully coordinate their actions beyond the
reach of existing communication networks. Different from
previous work, our approach does not use a heuristic for
network performance but instead adjusts network agent po-
sitions in order to directly maximize the end-to-end packet
delivery probability of the underlying opportunistic routing
protocol. Critically, our system is task agnostic and practical
to implement and operate on mobile robots equipped with
off the shelf WiFi radios. To show this, we conducted a sit-
uational awareness task where our MID approach improved
the delivery rate of critical mission information and a multi-
robot exploration task where it enabled foraging robots to
effectively coordinate their actions.
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